平板縦振動子を組み合わせた 超音波リニアモータの検討

松立優樹,青柳 学(室蘭工大),富川義朗(山形大·工),高野剛浩(東北工大)

研究背景

半導体デバイスの高集積化、ナノテクノロジの高度化

加工機、測定機器等の精密機器に対する高精度化への要求

ナノメートルオーダの精密位置決 センチメートルオーダのストロー

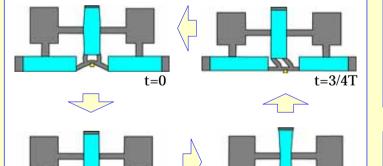
超音波アクチュエータ

ナノメートルオーダの位置決め 移送量の蓄積

多重振動モードを用いない

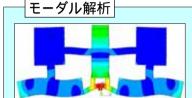
単純構成可能な

共振利用の薄型超音波リニアモ


本研究で提案するステータ振動子

Longitudinal vibrator for friction control •GND Frictional material (Alumina)

Longitudinal vibrator for thrust generation


SUS製の薄板両面にPZTを貼り付けた 3つの縦振動子をT字型に組み合わせた構造

動作原理

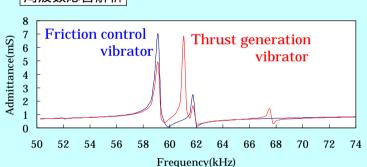
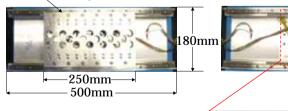
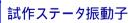
接触部(摩擦材)の楕円変位によりスライダを移送

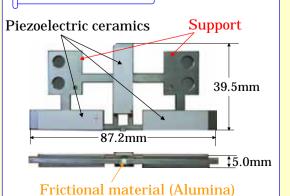
有限要素法解析結果

Friction control mode. (59.06kHz)

Thrust generation mode. (59.06kHz)

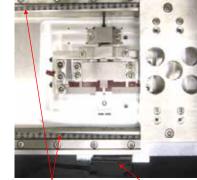
周波数応答解析


Fig. FEM analysis results (frequency response analyses).

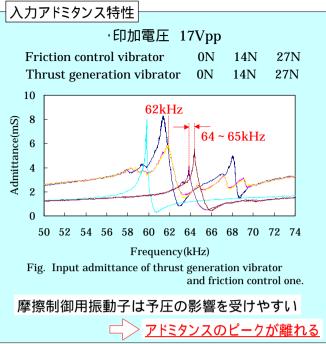
リニアステージの構成

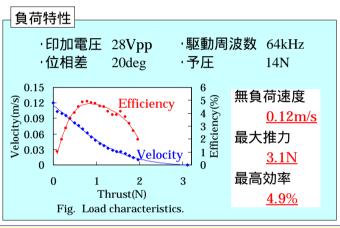
Slider(4kg)

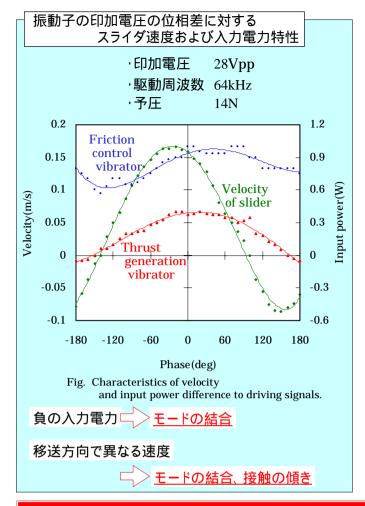

t = 1/4T

Slider Linear guide Preload unit

t = 2/4T


Movable table Stator vibrator




Crossroller guide

Linear encoder

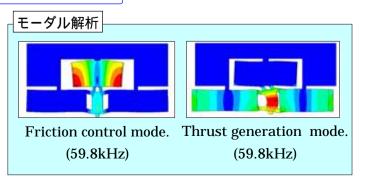
動作特性

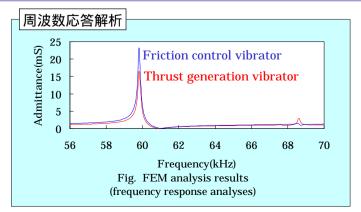
性能向上のために必要な改善点 ・予圧印加後のアドミタンスのピークを近づける ・モードを完全分離させる

ステータ振動子の改良

[変更点]

- ・摩擦制御縦振動子の向き
 - > 発生力の大きい節の変位で摩擦を制御


□○予圧の影響を受けに〈い構造


- ·PZTの縦と横の寸法比を 0.27 から 0.4 へ
- ・対称性をもった各振動子間の連結
 - > 屈曲振動の励振を抑制

> モードの完全分離

改良型ステータ振動子

有限要素法解析結果

