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Abstract. A group G satisfies a positive polynomial identity of length n if
there exist elements g1, . . . , gn ∈ G such that

xg1 . . . xgn = 1

for all x ∈ G. The minimum length of such an identity is called the generalized

exponent of G. We compute the generalized exponent of a class of finite groups

and apply it to show that every finitely generated solvable group of prime
generalized exponent is a finite p-group. Consequently, we show that every

finite group of generalized exponent 5 is a 5-group of exponent dividing 25.

1. Introduction

Assume G is an Ω-group, that is, Ω acts on G as a group of automorphisms.
Following [6] a polynomial of length l on G with respect to Ω is a map p : G −→ G
defined as

p(g) = gε1ω1 . . . gεlωl

for all g ∈ G in which ωi ∈ Ω and εi = ±1, for all i = 1, . . . , l. We note that the
polynomial p is a special case of the generalized words defined in [7]. The polynomial
p is called positive if εi = 1, for all i = 1, . . . , l. It is evident that for finite groups
the notion of polynomials coincide with that of positive polynomials. The group G
satisfies the polynomial p if imgp = {1}. Accordingly, the generalized exponent of
G with respect to Ω is defined as the minimum length of a positive polynomial it
satisfies and it is denoted by gexp(G,Ω). In the case Ω = G, the number gexp(G,Ω)
is called the generalized exponent of G and it is denoted by gexp(G) for convenience.
Clearly, the exponent of a group is the minimum length of a nontrivial positive
polynomial word it satisfies as a 1-group, that is, exp(G) = gexp(G, 1).

The notion of positive polynomials arises naturally in the theory of orderable
groups where g 6= 1 implies p(g) 6= 1 for any element g of an orderable group G
and any positive polynomial p of G (see [3]). Accordingly, an element g of a group
G is called generalized periodic provided that p(g) = 1 for some nontrivial positive
polynomial p of G. Hence an orderable group has no nontrivial generalized periodic
elements. However, the converse to this problem is known to be false (see [1]).

Endimioni [2] considers the opposite problem that in which groups all elements
are generalized periodic. Indeed, he studies groups having finite generalized expo-
nents and describes those groups whose generalized exponents are small. Obviously,
the only group of generalized exponent one is the trivial group. Also, a simple ver-
ification shows that the class of groups with generalized exponent two coincide
with that of elementary abelian 2-groups. However, the structure of groups with
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generalized exponents exceeding two is not much obvious as it will reveals in the
following:

Theorem 1.1 (Endimioni [2]). Let G be a group of generalized exponent 3. Then

(1) G is 3-abelian;
(2) G3 ⊆ Z(G);
(3) exp(G) = 3 or 9;
(4) G is nilpotent of class ≤ 3.

Theorem 1.2 (Endimioni [2]). Let G be a group of generalized exponent 4. Then

(1) G4 is nilpotent of class ≤ 2;
(2) G8 is abelian.

The aim of this paper is to extend the results of Edimioni to those finite groups
having generalized exponent 5. To end this, we shall study a more general problem
that which finite solvable groups satisfy positive polynomials of prime lengths.

2. Generalized exponents

Determining the generalized exponent of a (finite) group is not easy even if the
group has small order. Indeed, the most easy cases to be considered are that of
abelian groups as well as groups of prime exponents for which generalized expo-
nents coincide with the exponents. We use these facts to compute the generalized
exponent of yet another class of groups.

Lemma 2.1. Assume a normal subset X of a group H satisfies a positive polyno-
mial identity

xk1 . . . xkl = 1

with respect to a group K. Then X also satisfies the positive polynomial identity

xk
k
1 . . . xk

k
l = 1

for all k ∈ K.

Proof. Conjugating the equation xk1 . . . xkl = 1 by k and replacing x by xk
−1

the
result follows. �

Theorem 2.2. Let G = H oK be a finite group. Then

gexp(G) ≤ exp(K) · gexp(H,K).

Proof. Letm = exp(K) and n = gexp(H,K). Then there exist elements k1, . . . , kn ∈
K such that

hk1 . . . hkn = 1

for all h ∈ H. Since gm ∈ H for all g ∈ G, it follows that

gmk1 . . . gmkn = 1

for all g ∈ G. Therefore gexp(G) ≤ mn, as required. �

Theorem 2.3. Assume G = H o K is a finite group, in which H is a minimal
normal Sylow p-subgroup and K is a Sylow q-subgroup of G, respectively. Then

gexp(G) ≥ exp(Z(K)) · gexp(H,K).
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Proof. Suppose gexp(G) = n. Then G satisfies a positive polynomial identity

gg1 . . . ggn = 1

of length n. Let gi = hiki for i = 1, . . . , n, in which hi ∈ H and ki ∈ K. Clearly,
n = qem for some m ≥ 1 in which qe = exp(Z(K)). Let y ∈ Z(K) be an element
of order qe. For x ∈ H and i = 0, . . . , qe − 1, we have

(yix)g1 . . . (yix)gn = 1,

which implies that

xg1y
ig2 ...yign . . . xgn−1y

ign
xgn = 1.

Since H is abelian and y ∈ Z(K), it follows that

xg1y
i(n−1)

. . . xgn−1y
i

xgn = 1.

Writing H additively and looking at y as an operator of H, we observe that Y X = 0
in which

X =

 w1(g1, . . . , gn;x)
...

wqe(g1, . . . , gn;x)

 , Y =


1 · · · 1 1

yq
e−1 · · · y 1
...

. . .
...

...

y(q
e−1)2 · · · yq

e−1 1


and wi(g1, . . . , gn;x) = xgixgi+qe . . . xgi+(m−1)qe , for i = 1, . . . , qe. Let

Hi = 〈wi(gk1 , . . . , gkn;h) : h ∈ H, k ∈ K〉

for i = 1, . . . , qe. By Lemma 2.1, Hi is a normal subgroup of G and hence Hi = 1
or H, for i = 1, . . . , q. Suppose Hi = H for some i. If Y ∗ denotes the adjoint of
Y , then det(Y )X = Y ∗Y X = 0 yielding det(Y ) = 0 as h ∈ H and k ∈ K were
arbitrary. On the other hand,

det(Y ) =
∏

0≤i<j≤qe−1

(yj − yi) = yd
∏

1≤i≤qe−1

(yi − 1)q
e−i

for some d, which yields
∏

1≤i≤qe−1(yi−1)q
e−i = 0 as y is non-singular. Let δ be the

least common multiple of all numbers ≤ qe coprime to q. Clearly, the polynomial∏
1≤i≤qe−1(ti−1)q

e−i divides some power of tq
e−1δ−1 so that yq

e−1δ−1 is nilpotent.

Being element of GF (p)〈y〉, it follows that yq
e−1δ − 1 = 0 (see [5, 8.2.1]). Hence

yq
e−1

= 1, which is a contradiction. Therefore Hi = 1 for all i = 1, . . . , qe, which
implies that

hkihki+qe . . . hki+(m−1)qe = wi(k1, . . . , kn;h) = 1

for i = 1, . . . , qe. Hence m ≥ gexp(H,K) by definition. The proof is complete. �

The above lower and upper bounds yield us the following results:

Corollary 2.4. Assume G = H o K is a finite group, in which H is a minimal
normal Sylow p-subgroup and K is a Sylow q-subgroup of G, respectively. If, in
addition, exp(K) = exp(Z(K)) then

gexp(G) = exp(Z(K)) · gexp(H,K).

A Frobenius is said to be minimal if it contains no proper Frobenius subgroup.
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Corollary 2.5. Let G be a minimal Frobenius group. Then

gexp(G) = |H| · gexp(N,H),

in which H and N are a Frobenius complement and the Frobenius kernel of G,
respectively. Moreover, gexp(N,H) is the minimum coefficient sum among all mul-
tiples of the minimal polynomial of a generator of H on N whose coefficients are
non-negative integers.

Proof. Assume H and N are as in the Corollary. Clearly, N is a minimal normal
p-subgroup of G and H is a group of prime order q 6= p. Hence the equality holds by
Corollary 2.4. To complete the proof, let m = gexp(N,H) and let h be a generator
of H. Then there exist integers 0 ≤ ti < q such that

xh
t1
. . . xh

tm
= 1

for all x ∈ N . Let p be a polynomial defined as p(x) = xt1 + · · · + xtm . Clearly,
h acts on N as a linear transformation and that p is a multiple of the minimal
polynomial of h with positive coefficients. Conversely, any such a polynomial gives
rise to a positive polynomial identity for N with respect to H to which N satisfies,
as required. �

Example. Utilizing the above corollary, one can verify that gexp(A4) = 6. This
shows that there are groups other than abelian groups and those of prime exponents
whose generalized exponents coincide with their exponents. Also, gexp(C7oC3) =
9, gexp(C11 o C5) = 15 etc.

3. Groups satisfying a positive polynomial identity of prime length

A well-known result in abstract group theory states that every finite group of
prime power exponent is nilpotent. In what follows, we show that the same result
holds for finite solvable groups of prime generalized exponent. Utilizing this result,
we also show that every finite group of generalized exponent 5 is nilpotent as well.

Theorem 3.1. Every finitely generated solvable group satisfying a positive polyno-
mial identity of prime length is a finite p-group.

Proof. Suppose on the contrary that G is a finitely generated solvable group sat-
isfying a positive polynomial identity p = 1 of prime length p and that G is not
a p-group. Clearly, G is not nilpotent. First assume that G is finite and let G
be a non-nilpotent quotient of G of minimum order. From [5, Excercise 9.2.7], we
observe that G = QoH, in which Q is a minimal normal q-subgroup of G and H
is a q′-group acting faithfully on Q. Since G/Q is nilpotent, H is a p-group. Then,
by Theorem 2.3,

gexp(G) ≥ gexp(G) ≥ p · gexp(Q,H) > p,

which is a contradiction.
Finally, assume G is infinite. Clearly, G = G/G′′ has the same property as G

does. Being a finitely generated abelian group of finite exponent, G/G
′

is a finite

group, hence G
′

is a finitely generated abelian group. Let q be a prime not dividing

|G/G′|. Then G/G
′q

is a finite solvable group satisfying a positive polynomial
identity of length p, which is not a p-group, a contradiction. �
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Corollary 3.2. A solvable group satisfying a positive polynomial identity of prime
length is a p-group.

In order to show that a finite group satisfying a positive polynomial identity of
prime length is nilpotent, it is now enough to show that it is a solvable group. The
following result gives a criterion for the solvability of the corresponding group.

Proposition 3.3. Assume a finite group G satisfies a positive polynomial identity
xg1 . . . xgp = 1 of prime length. Then G is solvable if and only if 〈g1, . . . , gp〉 is
solvable.

Proof. Assume H = 〈g1, . . . , gp〉 is solvable. Since H satisfies the positive polyno-
mial identity xg1 . . . xgp = 1, it is a p-group by Theorem 3.1. Let P be a Sylow
p-subgroup of G containing g1, . . . , gp. For g ∈ NG(P ), the solvable group 〈P, g〉
satisfies the positive polynomial identity xg1 . . . xgp = 1 so that it is a p-group and
hence g ∈ P . Thus NG(P ) = P and by Guralnick-Malle-Navarro theorem in [4], G
is solvable. The converse is obvious. �

Lemma 3.4 ([2]). Let G be a group satisfying a positive polynomial identity of
length n. Then G satisfies the positive polynomial identity

x2xg1 . . . xgn−2 = 1

for some elements g1, . . . , gn−2 ∈ G.

Theorem 3.5. Every finite group satisfying a positive polynomial identity of prime
length p ≤ 5 is a p-group of exponent dividing p2.

Proof. Let G be a group satisfying a positive polynomial identity of prime length
p ≤ 5. For p = 2 the group G is elementary abelian and we are done. Also, by
Theorem 1.1, the result holds for p = 3. Hence assume that p = 5. We claim that
G is a p-group. Indeed, by Theorem 3.1, it is enough to show that G is solvable.
Suppose G is a minimal counter-example. Clearly, G has no nontrivial abelian
normal subgroup. Then Soc(G) is a direct product of non-abelian finite simple
groups so that CG(Soc(G)) = 1. If I is the subgroup of G generated by involutions,
then Soc(G) ⊆ I so that CG(I) = 1.

By Lemma 3.4, there exist elements a, b, c ∈ G such that

x2xaxbxc = 1

for all x ∈ G. We proceed in some steps.
(1) [βα−1, γα−1] = 1 when {α, β, γ} = {a, b, c}.
To end this, choose any involution x ∈ G. We observe that xaxbxc = 1 so that

xxuxv = 1 in which u = ba−1 and v = ca−1. By Lemma 2.1, we obtain xxuxv
u

= 1,
which implies that xv = xv

u

. Hence [u, v−1] ∈ CG(x). Since this is hold for all
involutions x, it follows that [u, v−1] ∈ CG(I) = 1, as required. The other two cases
are proved analogously.

(2) [ca, bc−3] = [ca, a2b−1a] = 1.
We use the proof of [2, Lemma 2.2]. Write the equality x2xaxbxc = 1 as

x2a−1xab−1xbc−1xc = 1.

Applying the transformation x 7→ c−1x yields

x2c−1xa−1c−1xab−1c−1xbc−2 = 1,
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which simplifies to

x2xcxcacxbc
−2

= 1.

Hence [ca, bc−3] = [cac · c−1, bc−2 · c−1] = 1 by (1). In the same way, by applying
the transformation x 7→ ax, one gets

x2ab−1axbc−1axcaxa = 1,

which simplifies to

x2xa
−1ba−1

xca
2

xa = 1.

Thus [ca, a−1ba−2] = [ca2 · a−1, a−1ba−1 · a−1] = 1 by (1) so that [ca, a2b−1a] = 1.
(3) 〈a, b, c〉 is an elementary abelian 5-group.
One can verify that the group

〈α, β, γ : α2αααβαγ = β2βαβββγ = γ2γαγβγγ =

[βα−1, γα−1] = [γα, βγ−3] = [γα, α2β−1α] = 1〉

is elementary abelian of order 53. As a quotient of 〈α, β, γ〉, the group 〈a, b, c〉 is
an elementary abelian 5-group, as required.

Now, by Proposition 3.3, the group G is solvable, which contradicts the assump-
tion. Therefore G is a p-group. To prove exp(G) divides 25, we use the NQ package
of GAP [8]. The following codes show that the largest nilpotent quotient H of the
group H = 〈a, b, c, x; g : g2gagbgc = 1〉 of generalized exponent 5 is a finite 5-group,
in which the element x = xH has order 25. This shows that every element of G
has order dividing 25. The proof is complete. �

LoadPackage("nq");

F:=FreeGroup(5);

g:=F.1;a:=F.2;b:=F.3;c:=F.4;x:=F.5;

T:=F/[g^a*g^b*g^c*g^2];

H:=NilpotentQuotient(G,[g]);

Order(H.4);

25

The results obtained in this section suggest us to pose the following conjecture.

Conjecture 3.6. Every nontrivial finite group satisfying a positive polynomial
identity of prime length is nilpotent.

Notice that a nilpotent group satisfying a positive polynomial identity of prime
length is always a p-group. Here we pose another conjecture describing the exponent
of such groups.

Conjecture 3.7. The exponent of a nontrivial finite p-group satisfying a positive
polynomial identity of length p is bounded above by p2.

While it seems the groups satisfying a positive polynomial identity of prime
length are restricted in structure, the situation is completely different for those
groups satisfying a positive polynomial identities of non-prime lengths. To see this,
let Bn denote the class of all groups satisfying a positive polynomial identity of
length n.

Theorem 3.8. The class Bn2 contains an infinite finitely generated solvable group
for every natural number n.
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Proof. It is known that the (n− 1)× (n− 1) matrix

A =


0 0 · · · 0 −1
1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1


satisfies the equation An−1 + · · · + A + I = 0 so that An = I. Consider the
group G = Zn−1 o 〈A〉 in which A acts on Zn−1 in the natural way. A simple
verification shows thatG is an infinite finitely generated metabelian group satisfying
the identity

xnA
n−1

. . . xnAxn = 1

of length n2. Hence G ∈ Bn2 , as required. �

Corollary 3.9. The class Bn2 contains a finite solvable group of exponent divisible
by any given number for every natural number n.

Proof. Let G = Zn−1o〈A〉 be the group defined in Theorem 3.8. Then G/mZn−1 ∈
Bn2 is a finite group of exponent mn for any m, as required. �
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