
ON DISTANCE GRAPHS ARISING FROM GRAPHS
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Abstract. All finite simple self 2-distance graphs with no 4-cycle, diamond,

or triangles with a common vertex are determined. Utilizing these results, it

is shown that there is no cubic self 2-distance graphs.

1. Introduction

Let (X, ρ) be a metric space and D be a set of positive real numbers. The
distance graph G(X,D) of X with respect to a distance set D is the graph whose
vertex set is X and two distinct vertices x and y are adjacent if ρ(x, y) ∈ D.

The well-known unit distance graph G(R2, {1}) is the first instance of a distance
graph arising from a question of Edward Nelson about its chromatic number in
1950 (see [11, Chapter 3]). It is shown by Nelson and Isbell [5], Moser and Moser
[8] and Hadwiger, Debrunner and Klee [4] that the chromatic number of this graph
is between 4 and 7. Unit distance graphs are also investigated on any of the sets
Rn, Qn and Zn as well (see [11] for a detailed history). The other well-studied
sort of distance graphs are the distance graphs G(Z, D) introduced by Eggleton,
Erdös and Skiltons in [3], where D is a set of positive integers. Clearly, every
graph Γ with associated distance function d defines a metric space (Γ, d). Hence,
we may define the distance graphs of the graph Γ with respect to a set of positive
integer distances. For example, the nth power of a graph Γ is defined simply as
the distance graph G(Γ, {1, . . . , n}). We refer the interested reader to the survey
articles [2, 7, 6] for further details concerning the mentioned three kinds of distance
graphs, respectively.

The nth distance graph (or n-distance graph) of a graph Γ is defined simply as
Γn := G(V (Γ), {n}). The study of nth distance graph initiated by Simić [10] while
solving the graph equation Γn ∼= L(Γ), where L(Γ) is line graph of Γ. Regarding
the same problem, we have classified of all graphs whose 2-distance graphs are path
or cycle in [1].

A graph is said to be self n-distance graph if it is isomorphic to its n-distance
graph. The aim of this paper is to investigate self 2-distance graphs under some
conditions. More precisely, we will show that self 2-distance graphs with no squares
or disjoin triangles are either odd cycles of order ≥ 5 or the edge product C5|C3.
Also, we show that a self 2-distance graph with no diamond is either an odd cycle of
order ≥ 5, the edged product C5|C3, or it is isomorphic to one of graphs in Figures
5.1.1 or 5.1.2. One note that our knowledge about n-distance graphs can be used
to answer/pose some problems in groups through their Cayley graphs. Indeed, we
may observe that the nth distance graph of a Cayley graph Cay(G,S) of G equals
Cay(G,Sn \ S) and hence it is itself a Cayley graph. Any isomorphism between
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Cay(G,S) and Cay(G,Sn \ S) give the constraint |Sn| < 2|S| on S, the problem
which is the subject of resent research. On the other hand, such an isomorphism
brings us the question whether Sn \S and S are conjugate via an automorphism of
G, which is a central problem in the theory of Cayley graphs. In case Sn \ S = Sθ

for some θ ∈ Aut(G), we have obviously Cay(G,Sn \ S) ∼= Cay(G,S), that is,
Cay(G,S) is a self nth distance graph.

Throughout this paper, we use the following notations: The maximum degree
of vertices of a graph Γ is denote by ∆(Γ) and NΓ(v) illustrates the set of all
neighborhoods of the vertex v in Γ. Also, ∇(Γ) denotes the number of triangles
in a graph Γ. All graphs in this papers are finite simple graphs with no multiple
edges. Remind that a diamond is the edge product D = C3|C3, where the edged
product of two edge-transitive graphs Γ1 and Γ2 is obtained by identification of an
edge from Γ1 and Γ2.

2. Preliminary results

We begin with a simple query about the existence of self 2-distance graphs.
Clearly, any odd cycle of length ≥ 5 is a self 2-distance graph. As we shall see later,
odd cycles are exceptional examples in the class of all self 2-distance graphs. We
note that the class of self 2-distance graphs is broad as Propositions 2.2 and 2.3
provide ample of them. The following simple key lemma plays an important role
in our study.

Lemma 2.1. Let Γ be a graph. Then diam(Γ) = 2 if and only if Γ2 = Γc.

Proposition 2.2. Let Γ be a self-complementary graph with diameter two. Then
Γ2
∼= Γ.

Proposition 2.3. Every graph is an induced subgraph of a self 2-distance graph.

Proof. Let Γ be an arbitrary graph. Consider two disjoint copies Γ1 and Γ2 of Γ
and two disjoint copies Γ3 and Γ4 of Γc, and let v be a new vertex. Then the graph
with vertex set

V (Γ1) ∪ V (Γ2) ∪ V (Γ3) ∪ V (Γ4) ∪ {v}
and edge set

E(Γ1) ∪ E(Γ2) ∪ E(Γ3) ∪ E(Γ4) ∪ E,
where

E = {{v, v1}, {v, v2}, {v1, v3}, {v2, v4}, {v3, v4} : vi ∈ V (Γi), i = 1, 2, 3, 4}

is a self 2-distance graph containing Γ as a subgraph (see Figure 2.3.1). �

v

Γ1

Γ3 Γ4

Γ2

Figure 2.3.1

Lemma 2.4. If Γ is a self 2-distance graph which is not an odd cycle, then gr(Γ) =
3.
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Proof. Since ∆(Γ) > 2, we may choose a vertex v of degree ≥ 3. If NΓ(v) is not
empty, then Γ has a triangle. Thus we may assume that NΓ(v) is empty. But then
NΓ(v)c is a subgraph of Γ2

∼= Γ, which implies that Γ has a triangle. Therefore
gr(Γ) = 3. �

The following lemma will be used in the next section.

Lemma 2.5. Let Γ be a graph. Then

|E(L(Γ))| = |E(Γ2)|+ |E(Γ)|+ 3∇(Γ)−
(
|V (Γ)|

2

)
+
∑
u 6∼v

|NΓ(u) ∩NΓ(v)|.

In particular,
|E(L(Γ))| = |E(Γ2)|+ 3∇(Γ)

whenever Γ has no 4-cycle subgraph.

Proof. It is straightforward. �

3. Graphs with no 4-cycle subgraph

Throughout this section, we assume that Γ ∼= Γ2 is a graph with no 4-cycle as
subgraph. Further, we assume that Γ is not an odd cycle. A simple observation
shows that every triangle in Γ2 comes from an induced claw, an induces 6-cycle
or an induced edge product C5|C3. Moreover, every 6-cycle in Γ is induced or it
induces a graph isomorphic to C5|C3. To achieve the classification of graphs Γ
with the mentioned properties, we need to analyze the existence of some special
subgraphs of Γ as presented in Lemma 3.2–3.6. The following lemma will be used
in the sequel without reference.

Lemma 3.1. ∆(Γ) = 3.

Proof. Since neither Γ nor Γ2 have 4-cycles and NΓ(v)c is a subgraph of Γ2 for all
v ∈ V (Γ), it follows that ∆(Γ) ≤ 3. Now, the fact that Γ is not a cycle, implies
that ∆(Γ) ≥ 3 so that ∆(Γ) = 3. �

Lemma 3.2. If Γ has a C5|C3 subgraph, then Γ is isomorphic to C5|C3.

Proof. Suppose on the contrary that Γ � C5|C3 and S ⊂ V (Γ) induces a subgraph
of Γ isomorphic to C5|C3 (see Figure 3.1.1). Then there exists a vertex v ∈ V (Γ)
adjacent to some vertex of S. Clearly, v is not adjacent to the temples for ∆(Γ) = 3.

First suppose that v is adjacent to the forehead. If v is adjacent to any of the jaws,
then we get a 4-cycle, which is a contradiction. Thus NS(v) = {a} or {a, d}, which
imply that {v, b, d, f} is a 4-cycle in Γ2, which is again a contradiction. Therefore v
is not adjacent to the forehead. Next assume that v is adjacent to the chin. Clearly,
v is not adjacent to both c and d, say c, for otherwise we have a r-cycle {c, d, e, v}.
Bu then {a, f, e, v} ⊆ NΓ2(c), that is, ∆(Γ2) > 3, which is a contradiction. Finally,
assume that v is adjacent to any of the jaws. Then v is adjacent to exactly one of
the jaws, say c, for otherwise {v, c, d, e} is a 4-cycle. Since (S ∪ {v})2 � S ∪ {v},
there exists yet another vertex u ∈ V (Γ) \ S ∪ {v} adjacent to some vertex of
S ∪{v}. If u is adjacent to v, then either NΓ2(c) contains {a, e, f, u} as u is cannot
be adjacent to c, which is a contradictions. Thus u is not adjacent to v and by
the same arguments as before u is adjacent to one of the jaws. Since u and c are
not adjacent, u and e must be adjacent, which implies that {b, f, u, v} ⊆ NΓ2

(d), a
contradiction. The proof is complete. �
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Figure 3.1.1

Lemma 3.3. If Γ has a 5-cycle, then Γ is isomorphic to C5|C3.

Proof. Since Γ � C5, then there exist a vertex v ∈ V (Γ)\S adjacent to some vertex
u of S, where S is a 5-cycle in Γ. Clearly, S is an induced subgraph of Γ. Let a, b
be two vertices adjacent to u in S and c, d be two other vertices. Since Γ has no
4-cycle it follows that v is not adjacent to c, d. Now, it is easy to see that either
Γ or Γ2 has a subgraph isomorphic to C5|C3, from which by Lemma 3.2, it follows
that Γ ∼= C5|C3. �

Lemma 3.4. If Γ has a 6-cycle, then Γ is isomorphic to C5|C3.

Proof. If Γ has a C5|C3 subgraph, then we are done. Thus we may assume that Γ has
no subgraph isomorphic to C5|C3. Let S ⊂ V (Γ) denote a 6-cycle a, b, c, d, e, f, a
in Γ. Clearly, S is an induced subgraph of Γ. Since S2 � S, we have a vertex
u ∈ V (Γ) \ S adjacent to some vertex a of S. Clearly, u is adjacent to exactly
one of b, f , say b, for otherwise either {b, d, f, u} is a 4-cycle in Γ2, or {b, a, f, u} is
a 4-cycle in Γ, which are both impossible. Again, the fact that Γ has no 4-cycle
implies that u is not adjacent to c, d, e, f . Moreover, u is the unique vertex adjacent
to both a, b. Now, we have three cases:

Case 1. If Γ has a subgraph T as drawn in Figure 3.3.3, then T is an induced
subgraph and a simple verification shows that T is a connected component of Γ,
which implies that Γ = T . But then Γ2 � Γ, which is a contradiction.

Case 2. If Γ has a subgraph T as drawn in Figure 3.3.2, then since T2 � T , Γ has
a vertex w′ adjacent to some vertex of T . If w′ is adjacent to any of the vertices
a′, b′, c′, d′, u′, v′, then we get a vertex of degree ≥ 4 in Γ or Γ2, which is impossible.
Thus w′ is adjacent to e′ or f ′ and by the previous argument it follows that w′ is
adjacent to both e′ and f ′, which is impossible by Case 1.

Case 3. Γ has no subgraphs isomorphic to that of Figure 3.3.2. Then u is the
only vertex of Γ adjacent to S (see Figure 3.3.1). Since (S ∪{u})2 � S ∪{u}, there
exists a vertex v ∈ V (Γ) \ S ∪ {u} adjacent to u. But then (S ∪ {u, v})2 is an
induced subgraph of Γ2

∼= Γ isomorphic to the graph in Figure 3.3.4, from which it
follows that deg(Γ2)2

(u) ≥ 4, a contradiction. �



ON DISTANCE GRAPHS ARISING FROM GRAPHS 5

a

bc

d

e f

u

a′

b′c′

d′

e′ f ′

u′v′

a′

b′c′

d′

e′ f ′

u′v′

w′
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Figure 3.3.4

Lemma 3.5. If Γ is not isomorphic to C5|C3, then Γ has no cycles of length
exceeding three.

Proof. By Lemmas 3.3 and 3.4 and hypothesis, Γ has no cycles of lengths 4, 5 or 6.
We proceed by induction to show that Γ has no cycles of lengths ≥ 4. Suppose Γ has
no cycles of lengths 4, 5, . . . , n for some n ≥ 6. If Γ has an (n+1)-cycle C, then C is
an induced subgraph of Γ. If n+1 is even, then clearly Γ2 has two (n+1)/2-cycles,
which is a contradiction. Thus n + 1 is odd. Since Γ is not an odd cycle, there
exists a vertex v ∈ V (Γ) adjacent to some vertex a ∈ V (C). Let NC(a) = {b, c}.
If v is adjacent to some vertex in C \ {a, b, c}, then we obtain a cycle of length l
(4 ≤ l ≤ n), which is a contradiction. If v is not adjacent to b, c, then Γ ∼= Γ2 has a
subgraph isomorphic to (C ∪ {v})2 that is an |C|-cycle with two adjacent vertices
having a common neighbor. Hence, we may assume that v is adjacent b or c, say b.
Since Γ has no 4-cycle, v is not adjacent to c. Let NC(b) = {a, d}. Then c, v, d is a
path of length two in Γ2. On the other hand, since C2 is a subgraph of Γ2, there is
a path of length at most n/2 from c to d disjoint from c, v, d. Hence Γ2 has a cycle
of length l such that 4 ≤ l ≤ n/2 + 2 ≤ n, which is a contradiction. The proof is
complete. �

Lemma 3.6. Triangles in Γ have disjoint vertices.

Proof. If two triangles of Γ have some vertices in common, then either Γ or Γ2 has
a 4-cycle, which is a contradiction. �

Now, we are ready to prove the main result of this section. To end this, we
use the notion of distance between two subgraphs of a graph as the length of the
shortest path connecting a vertex of the first subgraph to a vertex of the second
subgraph.

Theorem 3.7. Let Γ be a self 2-distance graph with no 4-cycle. Then either Γ is
an odd cycle or it is the edged product C5|C3.
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C5|C3

Proof. Let Γ′ be the graph obtained from Γ by contracting all triangles into single
vertices. By Lemmas 3.5 and 3.6, Γ′ is a tree. Let v and v′ (e and e′) be the number
of vertices (edges) of Γ and Γ′, respectively. Also, let ni be the number of vertices
of degree i in Γ for i = 1, 2, 3. Clearly, v′ = v − 2∇(Γ) and e′ = e − 3∇(Γ). Since
Γ′ is a tree, we have e′ = v′− 1, which implies that ∇(Γ) = e− v+ 1. On the other
hand, by Lemma 2.5, eL − e = 3∇(Γ), where eL is the number of edges of L(Γ),
the line graph of Γ. Now, we have

|V (Γ)| = n1 + n2 + n3,

|E(Γ)| = 1

2

∑
v∈V (Γ)

degΓ(v) =
n1 + 2n2 + 3n3

2
,

|E(L(Γ))| =
∑
v∈V

(
degΓ(v)

2

)
= n2 + 3n3,

from which it follows that n1 = 3.
If Γ has no triangles then Γ is a tree so that Γ2 is disconnected, which is a

contradiction. Hence Γ has some triangles. A triangle in Γ is said to be i-tailed
if it contains i cubic vertices. Clearly, Γ has no 3-tailed triangle for otherwise Γ2

must have a hexagon contradicting Lemma 3.4. Suppose Γ has no 1-tailed triangle.
Hence, we have no induced claws with two pendants, which implies that Γ has only
one induced claw along with only one 2-tailed triangle as drawn in Figure 3.7.1,
where a, b, d ≥ 1 and c ≥ 0. Clearly, c 6= 1 for otherwise degΓ2

(u) = 4, which is
impossible. A simple verification shows that dΓ(triangle, claw) = c and

dΓ2
(triangle, claw) =


c+4

2 , c is even,

c−3
2 , c is odd.

Since Γ ∼= Γ2 this implies that c = 4. On the other hand, we know that

|E(Γ)| = a+ b+ c+ d+ 4

and

|E(Γ2)| = a+ b+ c+ d+ 5− [
1

d
]

when c ≥ 2. But then d = 1 and a ± 1, b ∓ 1 = 2, 3, from which it follows that
Γ2 6∼= Γ, a contradiction.

u

a

b

c d
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Figure 3.7.1

Therefore, Γ has a 1-tailed triangle. Such a triangle arises from an induced claw
with two pendants in Γ. Since Γ has exactly three pendants, it can be drawn in
the plane (see Figure 3.7.2) with one further triangle having an edge in the dotted
areas, where a, b ≥ 0 and c ≥ 1 denote the number of vertices in the corresponding
dotted areas. We note that every triangle in Γ2 arises from an induced claw in Γ.
A simple verification shows that

|E(Γ)| = a+ b+ c+ 9

and

|E(Γ2)| = a+ b+ c+ 8 + [
1

a+ 1
] + [

1

b+ 1
],

which implies that ab = 0. Clearly, c = 1 for otherwise degΓ2
(o) ≥ 4, which is

impossible.

a b

c

o

Figure 3.7.2

First assume that a = 0. Then the graph Γ can be drawn as in Figure 3.7.3. Note
that |A| ≥ 3 for otherwise A has a vertex of degree ≥ 4 in Γ2, which is impossible.
This implies that two triangles in Γ2 are at distance at least five and so we must
have |B| ≥ 4. But then we obtain three induced claws in Γ2 as drawn in Figure
3.7.3 with dashes, which is a contradiction.

o

A B

Figure 3.7.3

Finally assume that b = 0. If |A| = 1, then two induced claws are connected
with two triangles with distance zero while it is not true in Γ2. Hence, |A| ≥ 2.
If |A| = 2, then A has a vertex of degree four in Γ2, which is impossible. Thus
|A| ≥ 3. Similarly, |B| ≥ 3 for otherwise it has a vertex of degree four in Γ2, a
contradiction. But then we obtain three induced claws in Γ2 as drawn in Figure
3.7.4 with dashes, which is a contradiction.

o

A B

Figure 3.7.4

The proof is complete. �
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4. Graphs with disjoint triangles

Throughout this section, we assume that Γ ∼= Γ2 is a graph with disjoint triangles.
Further we assume that Γ is not an odd cycle. As in section 3, we proceed by
analysing the existence of special subgraphs in Γ is several lemmas. The following
lemma is crucial in the proof of our results.

Lemma 4.1. We have ∆(Γ) = 3.

Proof. Let v be a vertex of Γ. Clearly, NΓ(v) is a union of isolated vertices and at
most one edge. Now, since NΓ(v)c is a subgraph of Γ2, we must have |NΓ(v)| ≤ 3,
as required. �

Lemma 4.2. If Γ has a C5|C3 subgraph, then Γ is isomorphic to C5|C3.

Proof. Suppose on the contrary that Γ is not isomorphic to C5|C3 and consider a
subgraph S of Γ isomorphic to C5|C3 as drawn in Figure 3.1.1. We proceed in two
steps.

Case 1. The jaws are non-adjacent. Hence there is a vertex in Γ \ S adjacent to
some vertex of S. First suppose that the chin d is adjacent to some new vertex g.
If g is not adjacent to jaws c and e, then we have two triangles {a, c, e} and {c, e, g}
with a common edge in Γ2 contradicting the assumption. Hence, g is adjacent
to exactly one of the jaws, say c. But then we have two triangles {a, c, e} and
{b, e, g} in Γ2 with a common vertex, which is another contradiction. Therefore,
NΓ(d) = {c, e}. Next assume that a jaw, say c, is adjacent to a new vertex g.
Clearly, b, d, f /∈ NΓ(g). If g and e are adjacent, then we have two triangles {b, d, g}
and {d, f, g} with a common edge in Γ2, a contradiction. Hence NS(g) = {c} and
the subgraph induce by {a, b, c, d, e, f} in Γ2 is isomorphic to C5|C3 with g adjacent
to its chin, which is impossible by the previous discussions. Clearly the temples are
not adjacent to any vertex of Γ \ S. Hence, the forehead a must be adjacent to a
new vertex g so that the subgraph induced by {a, b, c, d, e, f} in Γ2 is isomorphic
to C5|C3 with g adjacent to its jaws, which is impossible by previous arguments.

Case 2. The jaws are adjacent. Since the subgraph induced by S is not a self
2-distance graph, one of the foreheads or chin must be adjacent to a new vertex g,
say a and g are adjacent. Then we have two triangles {c, d, e} and {c, e, g} in (Γ2)2,
which is a contradiction. �

Lemma 4.3. The graph Γ does not have any hexagon.

Proof. Suppose on the contrary that Γ has a hexagon S as in Figure 4.3.1 with
vertices a, b, c, d, e, f . Since there is no subgraph isomorphic to C5|C3 in Γ, the only
possible chords of S are {a, d}, {b, e} or {c, f}. Since S is not a self 2-distance
graph, we may assume that a is adjacent to a new vertex g. Clearly, g is adjacent
to exactly one of b or f , say b, for otherwise either Γ or Γ2 has two triangles with
a common edge. Now, by using Lemma 4.2, one can easily see that the vertices
a, b, c, d, e, f, g induce a subgraph in Γ2 as drawn with dashes in Figure 4.3.1. Hence,
the degree of g in (Γ2)2 is at least four, which is a contradiction. �
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Figure 4.3.1

Lemma 4.4. The graph Γ does not have any pentagon.

Proof. Suppose on the contrary that Γ has a pentagon S with vertices a, b, c, d, e.
We consider two cases:

Case 1. S does not have any chord. Since Γ is not an odd cycle, we may assume
that a is adjacent to a new vertex f . By Lemma 4.2, f is not adjacent to b and e,
from which it follows that Γ2 has a subgraph isomorphic to C5|C3, a contradiction.

Case 2. S has a chord. Clearly, S has a unique chord, say {b, e}. Since S is not
a self 2-distance graph, it has a vertex adjacent to a new vertex f . First suppose
that a and f are adjacent. Since Γ2 does not have a subgraph isomorphic to C5|C3,
either c, d ∈ NΓ(f) or c, d /∈ NΓ(f). In both cases, the vertices a, b, c, d, e, f induce a
hexagon in Γ2, contradicting Lemma 4.3 (see Figure 4.4.1). Therefore, f is adjacent
to c or d, say c. Clearly, NS(f) = {c}. If there is a vertex g adjacent to d, then
again NS(g) = {d}. Now, by using Lemma 4.2, one can easily see that the vertices
a, b, c, d, e, f, g induce a subgraph in Γ2 as drawn with dashes in Figure 4.4.2. Hence,
the degree of a in (Γ2)2 is at least four, which is a contradiction. Therefore, d is
not adjacent to vertices other than c and e. This implies that the vertex f is
adjacent to another vertex g as in Figure 4.4.3. Again, by using Lemma 4.2, the
vertices a, b, c, d, e, f, g induce a subgraph in Γ2 as drawn with dashes in Figure
4.4.3. Hence, the degree of a in (Γ2)2 is at least four, which is a contradiction. The
proof is complete. �

a

b

c d

e

f a

b

c d

e

f g

a

b

c d

e

f g

Figure 4.4.1 Figure 4.4.2 Figure 4.4.3

Lemma 4.5. The graph Γ does not have any heptagon.

Proof. Suppose on the contrary that Γ has a heptagon S with vertices a, b, c, d, e, f, g.
By Lemmas 4.4 and 4.3, S is an induce subgraph. Since Γ is not an odd cycle, there
is a new vertex h adjance to some vertex of S. A simple verification shows that
h is adjacent to two consecutive vertices of S in Γ or Γ2. Hence, we may assume
that h is adjacent to vertices d and e of S in Γ. By Lemmas 4.3 and 4.4, one gets
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NS(h) = {d, e}. By the same reasons, one can easily show that the subgraph of Γ2

induced by the vertices a, b, c, d, e, f, g, h is as drawn in Figure 4.5.1 with dashed
lines. But then (Γ2)2 has two triangles {a, e, h} and {a, d, h} with a common edge,
which is a contradiction. �

a

b

c

d e

f

g

h

Figure 4.5.1

Lemma 4.6. The graph Γ does not have any octagon.

Proof. Suppose on the contrary that Γ has an octagon S with a, b, c, d, e, f, g, h as
its vertices. By Lemmas 4.4, 4.3 and 4.5, S is an induced subgraph of Γ. Since Γ
is not an even cycle, there is a new vertex i adjacent to some vertex of S. Clearly,
i is adjacent to two consecutive vertices of S for otherwise we have a pentagon in
Γ2 contradicting Lemma 4.4. Hence, we may assume that i is adjacent to vertices
d and e of S. Now, by Lemma 4.4, one can easily show that the subgraph of Γ2

induced by the vertices a, b, c, d, e, f, g, h, i is as drawn in Figure 4.6.1. But then
i is adjacent to vertices a, d, e, h in (Γ2)2 contradicting Lemma 4.1. The proof is
complete. �

a
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d e

f

g

h

i

Figure 4.6.1

Theorem 4.7. Let Γ be a self 2-distance graph with disjoint triangles. Then either
Γ is an odd cycle or it is the edged product C5|C3.

Proof. A simple verification shows that squares in Γ2 arises from hexagons or oc-
tagons. Hence, by Lemmas 4.3 and 4.6, Γ has no squares and the result follows by
Theorem 3.7. �

Corollary 4.8. There is no cubic self 2-distance graph.

Proof. By Theorem 4.7, and the fact that Γ is not the complete graph on four
vertices, it follows that Γ has an induced subgraph as in Figure 4.8.1. Then degΓ2

(u)
is two, which is a contradiction. �
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u

Figure 4.8.1

5. Graphs with no diamond subgraphs

In this section, we go further into the study of self 2-distance graphs with a
forbidden subgraph, which relies on our earlier results. Remind that a diamond is
the edged product of two triangles, namely C3|C3. A diamond with vertices a, b of
degree three and vertices c, d of degree two is denoted by D(a, b; c, d).

Theorem 5.1. Let Γ be a self 2-distance graph with no diamond as subgraph. Then
either Γ is an odd cycle, it is the edged product C5|C3, or it is isomorphic to one
the following graphs:

Figure 5.1.1 Figure 5.1.2

Proof. First we observe that ∆(Γ) ≤ 4. Indeed, if v ∈ V (Γ) is an arbitrary vertex,
then by assumption the subgraph induced by NΓ(v) is a union of disjoint edges and
isolated vertices. On the other hand, NΓ(v)c is a subgraph of Γ2, from which it
follows that |NΓ(v)| ≤ 4. If ∆(Γ) ≤ 3, then all triangles in Γ are disjoint and the
result follows by Theorem 4.7. Hence, in what follows, we assume that ∆(Γ) = 4
and that v ∈ V (Γ) is a vertex of degree four. Clearly, NΓ(v) is a union of two disjoint
edges, say {a, b} and {c, d}, and that NΓ(a) ∩NΓ(b) = NΓ(c) ∩NΓ(d) = {v}. Let
X = {a, b}, Y = {c, d} and MΓ(v) be the set of all vertices of Γ \ {v} adjacent to
an element of X and an element of Y . Suppose further that |MΓ(v)| is maximum
among all vertices of degree four. We proceed in some steps:

Case 1. If e, f ∈ MΓ(v), then NNΓ(v)(e) 6= NNΓ(v)(f). If not (NΓ(v) ∪ {e, f}) \
NNΓ(v)(e) has a diamond subgraph in Γ2, which is a contradiction.

Case 2. If e, f ∈ MΓ(v), then NΓ(e), NΓ(f) ⊆ NΓ(v). If not we may assume
that e is adjacent to a new vertex g. First assume that NNΓ(v)(e) ∩NNΓ(v)(f) = ∅
and we may assume that a, c ∈ NΓ(e) and b, d ∈ NΓ(f). Then we have a diamond
D(e, g; a, c) in Γ or a diamond D(a, c; f, g) in Γ2 according to g is adjacent simulta-
neously to a and c or not, which is a contradiction. Hence g is adjacent to exactly
one of a or c, say a. Hence g is not adjacent to d by assumption, from which it
follows that g and f are not adjacent for otherwise we get a diamond D(b, d; e, g)
in Γ2. Now, by replacing Γ, v, a, b, c, d, e, f, g by Γ2, b, c, g, d, e, a, v, f , we observe
that g and f are adjacent, which is impossible. Thus NNΓ(v)(e) ∩ NNΓ(v)(f) 6= ∅.
Assume that a, c ∈ NΓ(e) and a, d ∈ NΓ(f). Then degΓ(a) = 4, which implies that
e and f are adjacent. Hence degΓ(e) = 4 so that c and g are adjacent too. Now,
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by replacing Γ, v, a, b, c, d, e, f by Γ2, b, e, d, f, c, v, a, respectively, we observe that
NNΓ(v)(e) ∩NNΓ(v)(f) = ∅, which is impossible as mentioned before.

Case 3. |MΓ(v)| = 4. We may assume that NΓ(a) ∩ NΓ(c) = {v, e}, NΓ(b) ∩
NΓ(d) = {v, f}, NΓ(b)∩NΓ(c) = {v, g} andNΓ(a)∩NΓ(d) = {v, h} for some distinct
vertices e, f, g, h different from v, a, b, c, d. As degΓ(a) = degΓ(b) = degΓ(c) =
degΓ(d) = 4, the subgraph induced by e, f, g, h is the 4-cycle {e, g, f, h, e}. Hence,
by using case 2, the graph Γ is isomorphic to that drawn in Figure 5.1.2.

Case 4. |MΓ(v)| = 3. We may assume that NΓ(a) ∩ NΓ(c) = {v, e}, NΓ(b) ∩
NΓ(d) = {v, f}, NΓ(b) ∩ NΓ(c) = {v, g} for some distinct vertices e, f, g different
from v, a, b, c, d. Since degΓ(b) = degΓ(c) = 4, g is adjacent to e and f . But then
e and f are not adjacent for otherwise we obtain a diamond D(e, g; c, f). If Γ has
more than eight vertices, then there exists a new vertex h adjacent to a or d, say a.
Since degΓ(a) = 4, e and h must be adjacent. Then h is adjacent to b, c, v in Γ2 so
that |MΓ2

(v)| = 4. Hence, by case 3, Γ is isomorphic to the graph in Figure 5.1.2,
which is a contradiction. Therefore, the only vertices of Γ are v, a, b, c, d, e, f, g and
Γ is isomorphic to the graph drawn in Figure 5.1.1.

Case 5. |MΓ(v)| = 2. Then MΓ(v) = {e, f} for some vertices e and f . First
assume that NNΓ(v)(e) ∩ NNΓ(v)(f) = ∅, say NNΓ(v)(e) = {a, c} and NNΓ(v)(f) =
{b, d}. By case 2, there exists a new vertex g adjacent to a, b, c or d, say a. Then
degΓ(a) = 4, which implies that g and e are adjacent, contradicting case 2. Thus
NNΓ(v)(e) ∩ NNΓ(v)(f) 6= ∅, say NNΓ(v)(e) = {a, c} and NNΓ(v)(f) = {a, d}. Then
MΓ2

(b) = {a, v} and NNΓ(b)(a) ∩ NNΓ(b)(v) = ∅, which is impossible by similar
arguments as before.

Case 6. |MΓ(v)| = 1. Suppose that MΓ(v) = {e} and NNΓ(v)(e) = {a, c}. First,
we observe that neither a nor c is adjacent to a new vertex. If not we may assume
that a is adjacent to a new vertex f , from which it follows e and f must be adjacent.
But then a, v ∈ MΓ2

(b) contradicting the choice of v as Γ2
∼= Γ. Now, if two new

vertices f and g are adjacent to b or d, say b, then degΓ2
(a) = 4 while b is an

isolated vertex in NΓ2(a) = {c, d, f, g}, which is a contradiction. Hence, we may
assume that neither b nor d is adjacent to two vertices other than v, a, c. Next
assume that b and d are adjacent to new vertices f and g, respectively. If f and g
are adjacent, then a, v ∈MΓ2

(b), contradicting the choice of v. Hence, assume that
f and g are not adjacent and consequently b and d are not adjacent to g and f in
Γ2, respectively. Also, a and g are not adjacent in Γ2 for otherwise d and f must be
adjacent in Γ2, which is impossible. Now, it is easy to see that (Γ2)2 has a diamond
D(a, b; g, v), which is a contradiction. Hence, we may assume that at most one of
b and d are adjacent to a new vertex. Suppose b is such an element adjacent to a
new vertex f . Then either we have a diamond D(c, d; f, v) in (Γ2)2 when c and f
are not adjacent in Γ2, or e, f ∈M(Γ2)2

(v) when c and f are adjacent in Γ2, which
is a contradiction. Therefore, neither b nor d is adjacent to a new vertex other than
v, a, c. Then, the second neighborhood of v is consists of e only. Since the subgraph
induced by a, b, c, d, e is not self 2-distance graph, the vertex e must be adjacent to
some vertices other than v, a, b, c, d. If e is adjacent to two new vertices f, g, then
Γ2 has a diamond D(a, c; f, g), which is a contradiction. Hence, NΓ(e) = {a, c, f}
for some vertex f . As b, d, v ∈ NΓ2(e) and degΓ2

(e) ≤ 4, there must exists another
vertex g such that NΓ(f) = {e, g}. Then NΓ2(e) = {b, d, v, g} so that v and g must
be adjacent in Γ2, which is impossible as dΓ(v, g) = 4.
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Case 7. MΓ(v) = ∅. First suppose that three vertices among a, b, c, d are adjacent
to new vertices, say a, b, c are adjacent to distinct vertices e, f, g, respectively. If
g is adjacent to e or f , say e, then NΓ2(a) = {c, d, f, g} and hence c and f must
be adjacent in Γ2, that is, c and f are connected in Γ via a path of length 2.
Clearly, f and g are not adjacent for otherwise we have a diamond D(d, g; a, b) in
Γ2, a contradiction. Hence, there exists a new vertex h adjacent to both c and f .
Then NΓ(c) = {v, d, g, h} so that g and h must be adjacent. But then f and g
are adjacent in Γ2, which results in a diamond D(a, f ; c, g) in Γ2, a contradiction.
Thus, we deduce that there is no edges from NΓ(a)∪NΓ(b) to NΓ(c)∪NΓ(d), from
which we obtain a diamond D(a, b; v, g) in (Γ2)2, a contradiction. Next assume that
exactly two vertices among a, b, c, d are adjacent to vertices other than v, a, b, c, d.
We have two cases up to symmetry:

(i) a and b are adjacent to two distinct new vertices e and f , respectively. If e or f ,
say e, is adjacent to another vertex g in the third neighborhood of v, then NΓ2(a) =
{c, d, f, g} where {c, d, f} induces an independent set in Γ2, a contradiction. On the
other hand, if a or b, say a, is adjacent to another vertex g, then NΓ2

(b) = {c, d, e, g}
with {c, d, e} an independent set in Γ2, which is again a contradiction.

(ii) a and c are adjacent to two distinct new vertices e and f , respectively. If
e and f are adjacent, then e, f ∈ M(Γ2)2

(v), which contradicts the choice of v as
(Γ2)2

∼= Γ. Hence, we may assume that there is no edges from NΓ(a) \ {v, b} to
NΓ(c) \ {v, d}. If e is adjacent to a new vertex g, then N(Γ2)2

(d) = {c, e, g, v} with
{c, g, v} an independent set in (Γ2)2, which is impossible. Hence, NΓ(e) = {a} and
similarly NΓ(f) = {c}. Since, the subgraph induced by v, a, b, c, d, e, f is not a self
2-distance graph, we may assume that a is adjacent to another vertex g. But then
e and g are adjacent and hence NΓ2

(b) = {c, d, e, g} with {d, e, g} an independent
subset in Γ2, which is a contradiction.

Finally, assume that only one of the vertices a, b, c, d is adjacent to a vertex other
than v, a, b, c, d, say a is adjacent to a new vertex e. If a is adjacent to another vertex
f , then as before NΓ2

(b) = {c, d, e, f} with {d, e, f} an independent subset in Γ2,
which is a contradiction. Hence NΓ(a) = {v, b, e} so that e is adjacent to a vertex
f , from which we obtain a diamond D(c, d; e, f) in (Γ2)2, which is a contradiction.
The proof is complete. �

6. Open problems

We devote the last section of this paper to some open problems arising in our
study of self 2-distance graphs. The following conjecture, if it is true, can be applied
to shorten our proofs, and also will be useful while studying self 2-distance graphs
with other forbidden subgraphs.

Conjecture 1. Every self 2-distance graph is 2-connected.

A graph Γ with v vertices is strongly regular of degree k if there are integers λ
and µ such that every two adjacent vertices have λ common neighbors and every
two non-adjacent vertices have µ common neighbors. The numbers v, k, λ, µ are
the parameters of the corresponding graph.

Theorem 6.1. Every strongly regular self 2-distance graphs is a self-complimentary
graph and has parameters (4t+ 1, 2t, t− 1, t) where the number of vertices is a sum
of two squares.
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Proof. The result follows from [9] and the fact that every strongly regular graph
has diameter at most two. �

We have shown, in Corollary 4.8, that there is no self 2-distance cubic graph.
Indeed, we believe that a more general case also holds for regular graphs with odd
degrees while the same result cannot hold for regular graphs of even degrees by the
above theorem.

Conjecture 2. There are no regular self 2-distance graphs of odd degree.

We note that if the above conjecture is true then for any finite group G and
any inversed closed subset S of G \ {1} of odd size, the sets S2 \ S and S belong
to different orbits of the poset of subsets of G under the action of automorphism
group of G.
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