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Abstract. The aim of this paper is to give a survey of old and new results

on probabilities on finite groups arising from words.

1. Introduction

The study of groups depends heavily on studying laws (word equations) on
groups. The simplest example of this sort are abelian groups which admit the
word equation [x, y] = 1, where [x, y] := x−1y−1xy. The next important families of
groups defined by means of words are nilpotent and solvable groups, that is, a group
is nilpotent or solvable if it satisfies the word equation un = 1 or vn = 1 for some
n, respectively. The words un and vn are defined inductively as u2 = v2 := [x1, x2]
un := [un−1, xn] and vn = [vn−1, v

′
n−1] for all n ≥ 3, where vn−1 and v′n−1 denote

the same words with disjoint set of variables. We enjoy to remind two further fam-
ilies of groups arising from word equations, namely Engel groups which admits a
word equation of the form [y, x, . . . , x] = 1 (x appears n ≥ 1 times) and Burnside
groups which admit a word equation of the form xn = 1 for some n ≥ 1.

Let G be a group and w = w(x1, . . . , xn) be a word. Then w is said to be a law
for G if w(G) = 1, where

w(G) = {w(g1, . . . , gn) : g1, . . . , gn ∈ G}.
The theory of groups is well developed in the past decades resulting in many tools
and classification theorems which can be applied to describe finite groups. This
makes us able to study the word equations w = 1 in a much more generality,
namely determining or estimating the number of solutions to the equation

w(g1, . . . , gn) = 1

with g1, . . . , gn ∈ G. For instance, solving the equations wn = 1 with wn = xn

gives us the number of elements of a given order which is an important enumeration
problem in finite groups. The equation w = 1 arises a probabilistic notion in groups
which is usually more easier to work with it, so we give a formal definition of it
here.

Definition. Let G be a finite group, g ∈ G be a fixed element and w ∈ Fn be a
nontrivial word. Then the probability that a randomly chosen n-tuple of elements
of G satisfies w = g is defined by

P (G,w = g) =
|{(g1, . . . , gn) ∈ Gn : w(g1, . . . , gn) = g}|

|G|n
.
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If g = 1 is the identity element of G, then we simply write P (G,w) instead of
P (G,w = 1).

The aim of this survey is to present all the well-known results concerning the
quantities P (G,w = g). Our illustration of the results lacks that of system of
equation, which has been extensively studied in the literature. Also, we left the
other important probabilities arising from automorphisms as well as generation of
finite groups.

This paper is organized as follows: Section 2 considers special words which have
been of more importance in the literature. Section 3 analyzes the behavior of
P (G,w = g) when G or w is fixed while the other ranges over a given set. Finally,
section 4 deals with words for which the numbers P (G,w = g) are non-zero when
G ranges on an infinite class of groups. The famous conjecture of Ore is discussed
in this section.

2. Special words

2.1. The commutator word [x, y]. Commutativity can be though of the most im-
portant concept in group theory on which many other concepts are based. Clearly,
not all groups are abelian while sharing many properties with abelian groups. This
arises the question how a group can be near to abelian groups. This introduces a
measure on groups which is among the first probabilities studied till now.

Definition. The commutativity degree of a finite group is defined to be P (G, [x, y])
and it is denoted usually by d(G).

The degree of commutativity has a nice relationship with the important invariant
of groups which was first discovered by Erdös and Turan.

Theorem 2.1 (Erdös and Turan, 1968 [12]). If G is a finite group, then

d(G) =
k(G)

|G|
,

where k(G) denotes the number of conjugacy classes of G.

2.1.1. Joseph’s conjectures. Most results concerning the degree of commutativity
deals with two conjectures due to Joseph, which describes the set of all numbers
d(G) when G ranges over all finite groups. To this end, put

D := {d(G) : G is a finite group}.
The conjectures of Joseph are summarized as follow:

Conjecture 2.2 (Joseph, 1977 [33, 34]).

(1) Every limit point of D is rational.
(2) If l is a limit point of D, then there exists ε = εl > 0 such that D∩(l−ε, l) =
∅.

(3) D ∪ {0} is a closed subset of R.

Before to proceed the study of the set D, we illustrate the results for semigroups,
which is much easier than the case of groups. For this, put

D′ := {d(S) : S is a finite semigroup}.
The following theorem describe the set D′ completely.
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Theorem 2.3 (Givens, 2008 [21]). The set D′ is dense in [0, 1].

Indeed, we have the following complete description of D′.

Theorem 2.4 (Ponomarenko and Selinski, 2012 [76]). We have D′ = Q ∩ [0, 1].

Now, we turn back to Joseph’s conjectures. The first and simplest result was
first obtained by Joseph and Gustafson.

Theorem 2.5 (Joseph, 1969 [33]; Gustafson, 1973 [24]). If G is a finite (rep.
compact) non-abelian group, then

d(G) ≤ 5

8

and the equality holds if and only if G/Z(G) ∼= C2 × C2.

The first major work toward Joseph’s conjectures is made by Rusin and it is
continued by many author, which we mention in the following.

Theorem 2.6 (Rusin, 1979 [78]). The values of d(G) above 11
32 are precisely
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Theorem 2.7 (Das and Nath, 2011 [10]). Let G be a group of odd order. The
values of d(G) above 11

75 are precisely
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However, the following result of Hegarty gives the best general result till now.

Theorem 2.8 (Hegarty, 2013 [26]). If l ∈ ( 2
9 , 1] is a limit point of D, then

(i) l is rational, and
(ii) there exists an ε = εl > 0 such that D ∩ (l − εl, l) = ∅.

2.1.2. Nilpotency, solvability and supersolvability results. Further results in the
study of commutativity degrees utilizes other notions of group theory, namely nilpo-
tency, supersolvability and solvability. The following two results give a general
description of groups in terms of their commutativity degrees.

Theorem 2.9 (Neumann, 1989 [74]). For any real number r, there exists numbers
n1 = nr(r) and n2 = n2(r) such that if G is any finite group in which

d(G) ≥ 1

r
,

then there exists normal subgroups H,K of G with H ≤ K such that K/H is
abelian,

[G : K] ≤ n1 and |H| ≤ n2.

Theorem 2.10 (Lévai and Pyber, 2000 [46]). Let G be a profinite group with
positive commutitivity degree. Then G is abelian-by-finite.

Now, we state other results which describe the structure of a finite group when
its degree of commutativity is sufficiently large.
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Theorem 2.11 (Rusin, 1979 [78]; Lescot, 1995 [44]). Let G be a finite group. Then

(i) If d(G) > 1
2 , then G is isoclinic with an extra special 2-group. In particular,

G is nilpotent.
(ii) If d(G) = 1

2 , then G is isoclinic to S3.

Theorem 2.12 (Barry, MacHale and Nı́ Shé, 2006 [7]). Let G be a finite group. If
d(G) > 1

3 , then G is supersolvable.

Theorem 2.13 (Barry, MacHale and Nı́ Shé, 2006 [7]). Let G be a finite group of
odd order. If d(G) > 11

75 , then G is supersolvable.

Theorem 2.14 (Lescot, Nguyen and Yang, 2014 [45]). Let G be a finite group. If
d(G) > 5

16 , then

(i) G is supersolvable,
(ii) G is isoclinic to A4, or

(iii) G/Z(G) is isoclinic to A4.

Corollary 2.15 (Lescot, Nguyen and Yang, 2014 [45]). If G is a finite group. Then
d(G) = 1

3 if and only if G is isoclinic to A4.

Theorem 2.16 (Lescot, Nguyen and Yang, 2014 [45]). Let G be a finite group of
odd order. If d(G) > 35

243 , then

(i) G is supersolvable, or
(ii) G is isoclinic to (C5 × C5) o C3.

Theorem 2.17 (Lescot, Nguyen and Yang, 2014 [45]). Let G = N oH be a finite
group such that N is abelian. If d(G) > 1/s (s ≥ 2), then G has a nontrivial
conjugacy class of size at most s−1 in N . In particular, either Z(G) 6= 1 or G has
a proper subgroup of index at most s− 1.

Theorem 2.18 (Heffernan, MacHale and Nı́ Shé, 2014 [25]). Let G be a finite
group. If d(G) > 7

24 , then G is metabelian.

Theorem 2.19 (Heffernan, MacHale and Nı́ Shé, 2014 [25]). Let G be a finite
group of odd order. If d(G) > 83

675 , then G′ is nilpotent.

In 2006, Guralnick and Robinson studied the degree of commutativity in a much
more general case and obtained some general bounds for it in terms of nilpotent
and solvable radicals as well as derived length. In what follows, F (G) denotes the
Fitting subgroup (nilpotent radical) and sol(G) denotes the solvable radical of a
group G.

Theorem 2.20 (Guralnick and Robinson, 2006 [22]). Let G be a finite group. Then

d(G) ≤ d(F (G))
1
2 [G : F (G)]−

1
2 ≤ [G : F (G)]−

1
2 .

In particular,
d(G)→ 0 as [G : F (G)]→∞.

Theorem 2.21 (Guralnick and Robinson, 2006 [22]). If G is a finite group, then

d(G) ≤ [G : sol(G)]−
1
2 with equality if and only if G is abelian.

Theorem 2.22 (Guralnick and Robinson, 2006 [22]). If G is a finite group such
that d(G) > 3

40 , then either G is solvable, or G ∼= A5 × Cn2 (n ≥ 1), in which case

d(G) = 1
12 .
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Theorem 2.23 (Guralnick and Robinson, 2006 [22]). Let G be a finite solvable
groups of derived length d ≥ 4. Then

d(G) ≤ 4d− 7

2d+1
.

Theorem 2.24 (Guralnick and Robinson, 2006 [22]). Let G be a finite p-group of
derived length d ≥ 2. then

d(G) ≤ pd + pd−1 − 1

p2d−1
.

2.1.3. Subgroups. The notion of commutativity can be used simply is terms of sub-
sets of a group and it is usually interpret as permutability. Indeed, two subsets
(subgroup) X and Y of a group G are said to be permutable if XY = Y X. This
can be much more generalized to include general words.

Definition. A positive law in groups is a word equation w = 1, which can be
restated as an equation of the form u = v, where u and v are words in a given free
semigroup, that is, w = uv−1 or u−1v.

Example. The commutator law [x, y] = 1 is a positive law as it is equivalent to
the equation xy = yx.

2.2. The Engel words [x,n y]. The next special words to be considered are Engel
words. These words are more difficult to be studied, so there is only few results in
this case that we mention here.

Theorem 2.25 (Erfanian and Farrokhi, 2013 [13]). Let G be a finite 3-metabelian
group which is not a 2-Engel group. If p = minπ(G), then

P (G, [x, y, y]) ≤ 1

p
+

(
1− 1

p

)
|L2(G)|
|G|

and if L2(G) ≤ G, then

P (G, [x, y, y]) ≤ 2p− 1

p2
.

Moreover, both of the upper bounds are sharp at any prime p.

Conjecture 2.26. If G is a finite non-2-Engel group, then P (G, [x, y, y]) ≤ 13
16 .

Theorem 2.27 (Erfanian and Farrokhi, 2013 [13]). Let G be a finite 3-metabelian
group which is not a 2-Engel group. If p = minπ(G), then

P (G, [x, y, y]) ≥ d(G)− (p− 1)
|Z(G)|
|G|

+ (p− 1)
kG(L(G))

|G|
and if either G is a p-group or G′ has a unique involution, then

P (G, [x, y, y]) ≥ pd(G)− (p− 1)
|Z(G)|
|G|

.

Moreover, both of the lower bounds are sharp at any prime p.

We enjoy to mention the following Lie algebra analogue of Mann and Martinez.

Theorem 2.28 (Mann and Martinez, 1998 [68]). Let L be a finite Lie algebra of
characteristic p, which is not n-Engel. Then

P (L, [x,n y]) ≤ 1− 1

2n+1
.
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2.3. The power word xn. The next important words after commutator words
which have attracted many attentions are the power words.

Definition. Let G be a finite group and wn = xn. Then the probability that an
element of G satisfies the word equation wn = 1 is denoted by pn(G).

Power words are first considered by Frobenius while counting the number of
elements of a given order in finite groups.

Theorem 2.29 (Frobenius, 1895 [19]). Let G be a finite group whose order is
divisible by a number n. Then the number of solutions to the equation xn = 1 is a
multiple of n.

Corollary 2.30. If G is a finite group whose order is divisible by a number n, then

pn(G) ≥ n

|G|
.

Frobenius, in his paper, poses the following interesting long-standing conjecture,
whose proof is eventually completed by Iiyoria and Yamaki in 1991.

Conjecture 2.31 (Frobenius, 1895 [19]). Let G be a finite group whose order is
divisible by a number n. If the set Ln(G) of solutions to the equation xn = 1 has n
elements, then Ln(G) is a subgroup of G.

Theorem 2.32 (Iiyoria and Yamaki, 1991 [30]). The conjecture of Frobenius is
always true.

The first systematic study of power words is initiated by Miller who obtained
lower and upper bounds for the number solutions to a power word equation. Theo-
rems 2.40–2.49 state all results concerning the mentioned lower and upper bounds
including the results of Miller and others.

Theorem 2.33 (Miller, 1907 [73]). Let G be a non-abelian finite group. Then
p2(G) ≤ 3

4 . Moreover, if p2(G) > 1
2 , then p2(G) is equal to one of the following

numbers.

. . . ,
2n + 1

2n+1
, . . . ,

17

32
,

9

16
,

5

8
,

3

4

Theorem 2.34 (Miller, 1907 [72]). Let G be a non-abelian finite group of order 2km
(m odd). Then p2(G) ≤ 1

2 + 1
2m with equality if and only if G = H × Cn2 (n ≥ 0),

where H is a generalized dihedral group with an odd order abelian subgroup of index
two.

Theorem 2.35 (Miller, 1919 [71]). Let G be a non-abelian finite group of even
order which is not a 2-group. If p2(G) > 1

2 , then G is a generalized dihedral group.

Theorem 2.36 (Wall, 1970 [80]; Liebeck and MacHale, 1972 [54]). Let G be a
non-abelian finite group such that p2(G) > 1

2 . Then either G = H ×E, where E is
an elementary abelian 2-group and H is one of the following groups:

(1) a generalized dihedral group,
(2) direct product of two copies of dihedral groups of order 8,
(3) a central product of dihedral groups of order 8, or
(4) a group of with the following presentation
〈x1, y1, . . . , xn, yn, z : x2i = y2i = z2 = [xi, xj ] = [yi, yj ]

= [xi, yj ] = [yi, z] = 1, [xi, z] = yi, i, j = 1, . . . , n〉.
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Theorem 2.37 (Potter, 1988 [77]). Let G be a non-solvable group with p2(G) > 1
4 .

Then G is isomorphic to the product of A5 with an elementary abelian 2-group. In
this case, p2(G) = 4

15 .

Theorem 2.38 (Hegarty, 2005 [27]). Let G be a finite solvable group of derived
length n ≥ 3

p2(G) ≤ 1

2

(
3

4

)n−3
.

Moreover, if n = 5 then

p2(G) ≤ 4

15
.

Theorem 2.39 (Mann, 1994 [67]). Let G be a finite group. If p2(G) ≥ r + 1
|G| ,

then G contains a normal subgroup H such that both [G : H] and H ′ are bounded
by some function of r.

Theorem 2.40 (Laffey, 1976 [36]). Let G be a finite group, p be a prime divisor
of |G| and assume that is not a p-group. Then

pp(G) ≤ p

p+ 1
.

Theorem 2.41 (Laffey, 1976 [37]). Let G be a finite 3-group. Then

p3(G) ≤ 7

9
.

Theorem 2.42 (Laffey, 1979 [38]). Let G be a finite group which is not a 2-group.
Then

p4(G) ≤ 8

9
.

The above bounds are, in a sense, valid in a more generality according to a result
of Mann and Martinez in 1996.

Theorem 2.43 (Mann and Martinez, 1996 [69]). Let G be an m-generated finite
group of exponent not dividing n. Then

Pn(G) <
R(m,n2)

R(m,n2) + 1
,

where R(m,n) is the order of largest m-generated finite group of exponent n.

Theorem 2.44 (Mann and Martinez, 1996 [69]). Let G be an m-generated finite
p-group of exponent > pn. Then

Ppn(G) ≤ pR(m, pn)− 1

pR(m, pn)
.

Theorem 2.45 (Mann and Martinez, 1998 [68]). Let G be a finite p-group such
that

pp(G) >
3p − 2

3p − 1
.

Then L(G) is an (p− 1)-Engel Lie algebra.

The following two results give a precise evaluation of the number of solutions to
a power word equation in a powerful p-group.

Definition. A finite p-group G is called powerful if G′ ⊆ Gp when p is odd and
G′ ⊆ G4 when p = 2.
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Theorem 2.46 (Héthelyi and Lévai, 2003 [29]). Let G be a powerful p-group. Then

Pp(G) =
1

|Gp|
.

Theorem 2.47 (Mazur, 2007 [70]; Fernández-Alcober, 2007 [17]). Let G be a
powerful p-group and k ≥ 1. Then

Ppk(G) =
1

|Gpk |
.

2.4. Sets of words. We conclude this section with considering the join of words
arising from a combinatorial problem in groups.

Definition. A group G is said to satisfy the deficient kth power property on m-
subsets if |Xk| < |X|k for any m-subset X of G. The set of all finite groups with
the deficient square property on m-subsets is denoted by DS(m).

Notation.

• Let W (m,n) be the set of all nontrivial words xi1 · · ·xinx−1jn · · ·x
−1
j1

, where
i1, . . . , in, j1, . . . , jn = 1, . . . ,m.
• The probability that a randomly chosen m-tuple of G satisfies at least one

of the words in W ⊆ Fm \ {1} is denoted by P̃ (G,W ).

Freiman, while studying latin squares arising from multiplication table of groups,
obtained the following classification of groups with the deficient 2-power property
on 2-subsets of a group.

Theorem 2.48 (Freiman, 1981 [17]). Let G be a finite group. Then

P̃ (G,W (2, 2)) = 1,

if and only if either G is abelian or G ∼= Q8 × Cn2 ×O for some n ≥ 0 and abelian
odd order group O.

For groups not in DS(2) we have the following upper bound.

Theorem 2.49 (Farrokhi and Jafari, 2014 [15]). Let G be a finite group which does
not belong to DS(2). Then

P̃ (G,W (2, 2)) ≤ 27

32
and the equality holds if and only if G ∼= D8 × Cn2 for some n ≥ 0.

Further results about the quantities P̃ (G,W (m,n)) for m > 2 or n > 2 can be
found in [8, 28, 50, 51, 52, 53, 56] and we omit the details.

3. General words

The aim of this section is to review the results concerning the number of solutions
to a word equation w = 1 when w is an arbitrary word or G is an arbitrary
group. The following fundamental result of Solomon along with Frobeniu’s result
mentioned before provide a divisibility criterion for the number of solutions to a
word equation w = 1 for any arbitrary word w.

Theorem 3.1 (Solomon, 1969 [66]). Let G be a finite group and w be a word on two
or more letters. Then the number of solutions to the equation w = 1 is a multiple
of |G|.
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Corollary 3.2. If G is a finite group and w = w(x1, . . . , xn) is a word on n > 1
letters, then

P (G,w) ≥ 1

|G|n−1
.

3.1. A fixed group: Amit’s conjectures. Similar to Joseph’s conjecture in the
study of commutativity degrees, the following theorem of Amit and conjectures
succeeding it play important roles in the study of P (G,w) for a general word w.
Amit’s studies these quantities by fixing a finite group G and letting w varies over
all possible words.

Theorem 3.3 (Amit [4]). If G is a finite nilpotent group, then there exists a
constant c > 0 such that

inf{P (G,w) : w ∈ F∞} ≥ c.

Conjecture 3.4 (Amit [4]). If G is a finite solvable group, then there exists a
constant c > 0 such that

inf{P (G,w) : w ∈ F∞} ≥ c.

Conjecture 3.5 (Amit [4]). If G is a finite nilpotent group, then

inf{P (G,w) : w ∈ F∞} ≥
1

|G|
.

Question (Amit [4]). Let G is a finite non-solvable group, then

inf{P (G,w) : w ∈ F∞} = 0.

Amit’s conjectures are answered affirmatively in many cases as we mention below.

Theorem 3.6 (Levy, 2011 [48]). Let G be a finite group of nilpotency class 2. Then
the set

inf{P (G,w) : w ∈ F∞} ≥
1

|G|
.

Theorem 3.7 (Levy, 2011 [48]). Let G = A o H be a finite group where A is
abelian. If

P (H,w) ≥ 1

|H|
for a word w, then

P (G,w) ≥ 1

|G|
.

Theorem 3.8 (Nikolov and Segal, 2007 [75]). Let G be a finite group. Then G is
nilpotent if and only if

inf{P (G,w = g) : w ∈ F∞, g ∈ G} \ {0} > 0.

Theorem 3.9 (Abért, 2006 [1]). Let G be a finite group. Then for all n there exists
a word w ∈ Fn such that for all g1, . . . , gn ∈ G, the tuple (g1, . . . , gn) satisfies w if
and only if the subgroup 〈g1, . . . , gn〉 of G is solvable.

Theorem 3.10 (Nikolov and Segal, 2007 [75]). Let G be a finite group. Then G
is solvable if and only if

inf{P (G,w) : w ∈ F∞} > 0.
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Theorem 3.11 (Abért, 2006 [1]). Let G be a finite just non-solvable group. Then
the set

{P (G,w) : w ∈ F∞}
is dense in [0, 1].

3.2. A fixed word. Now, it’s time to fix a word w and let G varies over all finite
groups. This problem is more studied over non-abelian finite simple groups and the
first result is due to Jones who showed that the class of non-abelian finite simple
ring is not verbal in the sense that there is no nontrivial word w such that w(G) = 1
for all finite simple groups G.

Theorem 3.12 (Jones, 1974 [32]). Let w 6= 1 be a word. Then P (G,w) < 1 for all
but finitely many non-abelian finite simple groups G.

Jone’s result is generalized and strengthened by Shalev and his colleagues re-
cently.

Theorem 3.13 (Dixon, Pyber, Seress and Shalev, 2003 [11]). Let w ∈ F2 be a
word. Then

lim
|G|→∞

P (G,w) = 0,

where G ranges over non-abelian finite simple groups.

Theorem 3.14 (Larsen and Shalev, 2012 [40]). For every word w 6= 1 there exists
ε = ε(w) > 0 such that

P (G,w) ≤ |G|−ε
for all non-abelian finite simple groups G of order at least N = N(ε) > 0.

Theorem 3.15 (Larsen and Shalev, 2012 [40]). For every 1 6= w ∈ Fn, there exists
a number ε = ε(w) > 0 and a constant c such that

P (G,w = g) ≤ c|G|−ε
for all non-abelian finite simple groups G and elements g ∈ G.

4. Word maps

This last section is devoted to the non-homogeneous word equations which was
inspired originally by the Ore’s conjecture on the non-homogeneous commutator
equation. All results in this section deals with non-abelian finite simple groups as
the problem is almost trivial or uninteresting in case of solvable groups and also
general groups.

Definition. Let w ∈ Fn be a word on x1, . . . , xn. For any group G, the word w
determines a map

w : Gn −→ G
(g1, . . . , gn) 7−→ w(g1, . . . , gn)

and it is called a word map.

We note that if w is a word and G is a finite group, then the word map defined
by w is surjective if and only if P (G,w = g) > 0 for all g ∈ G.

The main question in this section is: when a non-homogeneous word equation has
a nontrivial solution? This is equivalent to say that when the word maps defined
above are surjective or non-surjective. We first give examples of non-surjective
words on some classes of groups and then consider the more interesting problem
that under which conditions a word map is surjective.
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4.1. Non-surjective maps. The following results show that not all nontrivial
words are surjective over non-abelian finite simple groups even if the order of groups
are sufficiently large.

Theorem 4.1 (Levy, 2012 [49]). Let n be a number and let C denote any equiva-
lence class in An with support size at most 10. Then there exists a word w = wC
such that (An)w = {1} ∪ C.

Theorem 4.2 (Levy, 2012 [49]). For every n ≥ 2 and q = 22
n

, there exists a word
w in F2 such that SL2(q)w consists of the identity and a single equivalence class of
elements of order 17.

Theorem 4.3 (Kassabov and Nikolov, 2013 [35]). For every n ≥ 7, n 6= 13, there is
a word w = w(x1, x2) ∈ F2 such that (An)w consists of the identity and all 3-cycles.
When n = 13, there is a word w = w(x1, x2, x3) ∈ F3 with the same property.

Theorem 4.4 (Kassabov and Nikolov, 2013 [35]). For every n and q ≥ 2 with
the possible exception of SL4(2), there is a word w = w(x1, x2) ∈ F2 such that
SLn(q)w consists of the identity and the conjugacy class of all transvections. For
SL4(2), the word w = x2101 takes values the identity, the transvections and the
double transvections with Jordan normal form J2(1) · J2(1).

Theorem 4.5 (Jambor, Liebeck and O’Brien, 2013 [31]). Let k ≥ 2 be an integer
such that 2k + 1 is a prime and let w = x21[x−21 , x−12 ]k. If p 6= 2k + 1 be a prime of
inertia degree m > 1 in Q(ζ + ζ−1), where ζ is a primitive (2k+ 1)th root of unity,
and (2/p) = 1, then the word map associated to w is non-surjective on PSL2(q)
for all q = pn where n is a positive integer not divisible by 2 or by m.

Corollary 4.6. The above theorem satisfies if p 6= 2k + 1 is a prime such that
p2 6≡ 1 (mod 16), p2 6≡ 1 (mod 2k + 1) and m is the smallest positive integer with
p2m ≡ 1 (mod 2k + 1).

The above partial results are generalized by Lubotzky to include any non-abelian
finite simple group, which is further extended to any non-abelian almost finite
simple group by Levy.

Theorem 4.7 (Lubotzky, 2014 [57]). Let G be a non-abelian finite simple group
and X be an Aut(G)-invariant subset of G containing the identity. Then there
exists a word w ∈ F2 such that w(G) = X.

Corollary 4.8 (Lubotzky, 2014 [57]). For every non-abelian finite simple group G,
there exists a word w = w(x, y) ∈ F2 such that w(a, b) 6= 1 if and only if G = 〈a, b〉
for all elements a, b ∈ G.

Theorem 4.9 (Levy, 2014 [47]). Let G be a non-abelian almost simple group with
simple socle S and suppose that G E Aut(S). Let X be an Aut(G)-invariant subset
of S containing the identity. Then there exists a word w ∈ F2 such that w(G) = X.

4.2. Special words. Before to deal with a general word, we discuss several special
words which arises historically.

4.2.1. Commutator maps: The Ore conjecture. The most important word to be
considered first and is of special interest in the literature arises from Ore’s works.

Conjecture 4.10 (Ore, 1951 [61]). The commutator map is surjective over all
non-abelian finite simple groups.
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Ore’s conjecture is prove affirmatively from a probabilistic point view by Shalev.

Theorem 4.11 (Shalev, 2009 [65]). Let w = [x, y] be the commutator word. Then

lim
|G|→∞

|w(G)|
|G|

= 1,

where G ranges over non-abelian finite simple groups.

Now, we turn back to the main Ore’s conjecture. Here is the list of achievements
on Ore’s conjecture, which finally resulted in the complete proof of it.

• Alternating groups (Ore, 1951),
• PSLn(q) (Thompson, 1961-1962),
• Sporadic simple groups (Neubüser, Pahlings and Cleuvers, 1984),
• PSp2n(q) with q ≡ 1 (mod 4) (Gow, 1988),
• Exceptional groups of Lie type of rank at most 4 (Bonten, 1993),
• Groups of Lie type over a finite field of order ≥ 8 (Ellers and Gordeev,

1998),
• Semisimple elements of finite simple groups of Lie type (Gow, 2000),
• Groups of Lie type over a finite field of order q < 8 (Liebeck, O’Brien,

Shalev and Tiep, 2010).

The main and last progress on the proof of Ore’s conjecture is based on the
following well-known character theoretical formula of Frobenius.

Theorem 4.12 (Frobenius, 1896 [18]). Let G be a finite group and g ∈ G. The
number of solutions to the equation [x, y] = g equals

|G|
∑

χ∈Irr(G)

χ(g)

χ(1)
.

Liebeck, O’Brien, Shalev and Tiep use the following identity∑
χ∈Irr(G)

χ(g)

χ(1)
= 1 +

∑
16=χ∈Irr(G)

χ(g)

χ(1)

and show that the last term on right is sufficiently smaller that 1 for the remained
groups which results in the proof of Ore’s conjecture. Shalev uses the same argu-
ments to strengthen the result of Ore’s conjecture from a probabilistic point of view
as follows:

Definition. Let G be a finite group and s be a complex number. Then

ζG(s) =
∑

χ∈Irr(R)

χ(1)−s

is the Witten’s zeta function of G.

Lemma 4.13 (Shalev, 2008 [64]). If G is a finite non-abelian simple group, then

lim
|G|→∞

ζG(2)→ 1.

Theorem 4.14 (Garion and Shalev, 2009 [20]). Let G be a finite group and θ = θG
be the commutator map. Then∣∣∣∣ |θ−1(Y )|

|G|2
− |Y |
|G|

∣∣∣∣ ≤ 3ε(G)
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for every subset Y of G, and

|θ(X)|
|G|

≥ |X|
|G|2

− 3ε(G)

for every subset X of G×G, where ε(G) = (ζG(2)− 1)
1
4 .

4.2.2. Engels maps and beyond. The next words which have attracted attention of
some authors are the Engel words. This arises from the works of Shalev who made
the following two conjectures.

Conjecture 4.15 (Shalev, 2007 [63]). The n-th Engel word (n ≥ 1) map is sur-
jective for any finite simple non-abelian group G.

Conjecture 4.16 (Shalev, 2007 [63]). Let w 6= 1 be a word which is not a proper
power of another word. Then there exists a number C(w) such that if G is either
Ar or a finite simple group of Lie type of rank r, where r > C(w), then w(G) = G.

The above conjectures are studied by Bandman, Garion and Grunewald who
obtained the following partial answers.

Theorem 4.17 (Bandman, Garion and Grunewald, 2012 [5]). The n-th Engel word
(n ≥ 1) map is almost surjective for the group SL2(q) provided that q ≥ q0(n) is
sufficiently large.

Corollary 4.18. The n-th Engel word (n ≤ 4) map is surjective for all groups
PSL2(q).

4.2.3. Power maps. The last words we mention here are the power maps. In this
regard, the squaring words are of special interest. Utilizing the following compu-
tational results of Lucido and Pournaki, in 2005 Das shows that the set w(G) has
any possible magnitude of order in comparison with the order of G.

Theorem 4.19 (Lucido and Pournaki, 2005 [58]). If w = x2, then

(i) If G = PSL2(q) (q = pf ), then

|w(G)|
|G|

=

{
3
4 , q is odd,
q−1
q , q is even.

(ii) If G = Sz(q) (q = 22f+1), then

|w(G)|
|G|

=
q − 1

q
.

(iii) If G = R(q) (q = 32f+1), then

|w(G)|
|G|

=
5

8
.

(iv) If G = PSU3(q2) (q = pf and d = gcd(3, q + 1)), then

|w(G)|
|G|

=

{
5q2+3q−4
8q(q+1) , q is odd,
q2−q−d
q2(q+1) , q is even.

Theorem 4.20 (Das, 2005 [9]). Let w = x2. Then the values of |w(G)|/|G| are
dense in the unit interval [0, 1] as G ranges over all finite groups.
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Das, in his paper, poses the following conjecture which we have answered it
partially.

Question (Das, 2005 [9]). Let w = x2 and S = {|w(G)|/|G| : G is a finite group}.
Is it true that S = Q ∩ [0, 1]?

Proposition 4.21 (Farrokhi, 2008 [14]). Let w = x2. Then for every rational
number r ∈ [0, 1], there exists a number n and a finite group G such that

|w(G)|
|G|

=
1

2n
· r.

Despite the above facts, the size of w(G), for a power word w, can be under
control when G is a fixed group. This is the content of the following result which
was already known in a much more generality by Bannai, Deza, Frankl, Kim and
Kiyota.

Theorem 4.22 (Lucido and Pournaki, 2008 [59]). Let G be a finite group of even
order and w = x2. Then

|w(G)|
|G|

≤ 1−
b
√
|G|c
|G|

.

Theorem 4.23 (Bannai, Deza, Frankl, Kim and Kiyota, 1989 [6]). Let G be a
finite group and w = xn, when n is a divisor of |G|. Then

|w(G)|
|G|

≤ 1−
b
√
|G|c
|G|

.

4.2.4. Power maps: Lagrange’s four square theorem for groups. Motivated by La-
grange’s four square theorem in number theory concerning sum of powers, Liebeck,
O’Brien, Shalev and Tiep in 2012 present the following interesting stronger results
for groups instead of numbers, which was already proved in a weaker version by
Martinez, Zelmanov, Saxl and Wilson.

Theorem 4.24 (Martinez and Zelmanov, 1996 [60]; Saxl and Wilson, 1997 [62]).
For every d, there is an integer n = n(d) such that for every finite simple group G
not of exponent dividing d we have

G = {gd1 · · · gdn : g1, . . . , gn ∈ G}.

Theorem 4.25 (Liebeck, O’Brien, Shalev and Tiep, 2012 [55]). Every element of
every non-abelian finite simple group G is a product of two squares.

Theorem 4.26 (Liebeck, O’Brien, Shalev and Tiep, 2012 [55]). Every element of
every finite non-abelian simple group G is a product of two p-th powers provided
that p > 7 is a prime.

4.3. General words. We conclude this section with considering a general non-
homogeneous word equation. Larsen in 2004 obtains the first estimation on the
number of solutions to a non-homogeneous word equation over non-abelian finite
simple groups.

Theorem 4.27 (Larsen, 2004 [39]). For every nontrivial word w and ε > 0 there
exists a number C(w, ε) such that if G is a finite simple group with |G| > C(w, ε),
then |w(G)| ≥ |G|1−ε.
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Motivated by Larsen’s achievements, one can ask whether a word is surjective
over a sufficiently large non-abelian finite simple group. This problem is almost
solved by Shalev and his colleagues as we follows:

Theorem 4.28 (Shalev, 2009 [65]). Let w 6= 1 be a group word. Then there
exists a positive integer N = N(w) such that for every finite simple group G with
|G| ≥ N(w) we have w(G)3 = G.

Theorem 4.29 (Larsen and Shalev, 2009 [41]). For each pair of nontrivial words
w1, w2, there exists a number N = N(w1, w2) such that for all integers n ≥ N we
have w1(An)w2(An) = An.

Theorem 4.30 (Larsen and Shalev, 2009 [41]). Given an integer d and two non-
trivial words w1 and w2, there exists a number N = N(d,w1, w2) such that if Γ
is a simply connected almost simple algebraic group of dimension d over a finite
field F , G = Γ(F )/Z(Γ(F )) is the finite simple group associated to Γ over F , and
|G| ≥ 5N , then we have w1(G)w2(G) = G.

Theorem 4.31 (Larsen and Shalev, 2009 [41]). For each triple of nontrivial words
w1, w2, w3, there exists a number N = N(w1, w2, w3) such that if G is a finite
simple group of order at least N , then w1(G)w2(G)w3(G) = G.

Conjecture 4.32 (Larsen and Shalev, 2009 [41]). For each pair of nontrivial words
w1, w2, there exists a number N = N(w1, w2) such that if G is a finite simple group
of order at least N , then w1(G)w2(G) = G.

Theorem 4.33 (Larsen, Shalev and Tiep, 2013 [43]). If w1, w2 and w3 are non-
trivial words, then for all finite quasisimple groups G of sufficiently large order,
w1(G)w2(G)w3(G) = G.

Theorem 4.34 (Larsen, Shalev and Tiep, 2011 [42]). Let w1, w2 ∈ Fd be nontrivial
words. Then there exists a constant N = N(w1, w2) such that for all non-abelian
finite simple groups G of order greater than N , we have w1(G)w2(G) = G.

Corollary 4.35 (Larsen, Shalev and Tiep, 2011 [42]). For every positive integer
k there exists a constant N = Nk such that for all non-abelian finite simple groups
G of order greater than N , every element in G can be written as xkyk for some
x, y ∈ G.

As before, the above results on non-abelian finite simple groups can be stated in
a larger class of groups, namely, the class of finite quasisimple groups.

Theorem 4.36 (Guralnick and Tiep, 2013 [23]). Let w1 and w2 be two nontriv-
ial words. Then there exists a constant N = N(w1, w2) depending on w1 and
w2 such that for all finite quasisimple groups G of order greater than N we have
w1(G)w2(G) ⊇ G \ Z(G).

Theorem 4.37 (Guralnick and Tiep, 2013 [23]). Let s, t ≥ 1 be any two integers
and let m := max(s, t). If G is any finite simple group of order at least m8m2, then
every element in G can be written as xsyt for some x, y ∈ G.
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[29] L. Héthelyi and L. Lévai, On elements of order p in powerful p-groups, J. Algebra 270 (2003),

1–6.
[30] N. Iiyori and H. Yamaki, On a conjecture of Frobenius, Bull. Amer. Math. Soc. 25 (1991),

413–416.

[31] S. Jambor, M. W. Liebeck and E. A. O’Brien, Some word maps that are non-surjective on

infinitely many finite simple groups, Bull. London Math. Soc. 45 (2013) 907–910.
[32] G. A. Jones, Varieties and simple groups, J. Aust. Math. Soc. 17 (1974) 163173.

[33] K. S. Joseph, Commutativity in non-abelian groups, Ph.D. Thesis, UCLA (1969).
[34] K. S. Joseph, Several conjectures on commutativity in algebraic structures, Amer. Math.

Monthly 84 (1977), 550–551.



ON THE PROBABILITY THAT A GROUP SATISFIES A LAW; A SURVEY 17

[35] M. Kassabov and N. Nikolov, Words with few values in finite simple groups, Q. J. Math. 64
(2013), 1161–1166.

[36] T. J. Laffey, The number of solutions of xp = 1 in a finite group, Math. Proc. Cambridge

Philos. Soc. 80 (1976), 229–231.
[37] T. J. Laffey, The number of solutions of x3 = 1 in a 3-group, Math. Z. 149 (1976), 43–45.

[38] T. J. Laffey, The number of solutions of x4 = 1 in finite groups, Math. Proc. Roy. Irish Acad.

79A(4) (1979), 29–36.
[39] M. Larsen, Word maps have large image, Israel J. Math. 139 (2004), 149–156.

[40] M. Larsen and A. Shalev, Fibers of word maps and some applications, J. Algebra 354 (2012),
36–48.

[41] M. Larsen and A. Shalev, Word maps and Waring type problems, J. Amer. Math. Soc. 22(2)

(2009), 437–466.
[42] M. Larsen, A. Shalev and P. H. Tiep, The Waring problem for finite simple groups, Ann.

Math. 174 (2011), 1885–1950.

[43] M. Larsen, A. Shalev and P. H. Tiep, Waring problem for finite quasisimple groups, Int.
Math. Res. Not. Vol. 2013, No. 10, 2323–2348.

[44] P. Lescot, Isoclinism classes and Commutativity degrees of finite groups, J. Algebra 177

(1995), 847–869.
[45] P. Lescot, H. N. Nguyen and Y. Yang, On the commuting probability and supersolvability of

finite groups, Monatsh. Math. 174 (2014), 567–576.
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