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1 Introduction

We consider two nonlinear problems for the wave equation. First we show the blow
up result to the following initial value problem for the wave equation with weighted
nonlinear terms in one space dimension:

∂2
t u− ∂2

xu = G(x, u), (x, t) ∈ R× [0,∞),

u(x, 0) = ϕ(x), ∂tu(x, 0) = ψ(x), x ∈ R,

where ϕ(x) ∈ C2(R), ψ(x) ∈ C1(R), and G is the nonlinear term such that G(x, 0) = 0
for x ∈ R.

The second problem is the inital value problem for the nonlinear Klein-Gordon equa-
tion in the de Sitter spacetime,

∂2
t Φ + nΦt − e−2t∆Φ +m2Φ = F (Φ), (x, t) ∈ Rn × R,

Φ(x, 0) = ϕ0(x), ∂tΦ(x, 0) = ϕ1(x), x ∈ Rn,

where ϕ0, ϕ1 ∈ WN,2(Rn) and F is the nonlinear term. We derive pointwise decay
estimates for the solution to the linear Klein-Gordon equation in the de Sitter spacetime
with and without source term by using the decay estimate for the following linear wave
equation with zero initial velocity and nonzero initial position,

vtt −∆v = 0, v(x, 0) = ϕ(x), vt(x, 0) = 0, (x, t) ∈ Rn × R

where ϕ(x) ∈ C∞0 (Rn). We use the estimates for proving that the inital value problem
to the nonlinear Klein-Gordon equation admits a global solution for small initial data.
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2 Wave equation with weighted nonlinear terms

We consider the initial value problem for nonlinear wave equations in one space dimen-
sion: {

∂2
t u− ∂2

xu = G(x, u), (x, t) ∈ R× [0,∞),

u(x, 0) = ϕ(x), ∂tu(x, 0) = ψ(x), x ∈ R,
(2.1)

where ϕ(x) ∈ C2(R), ψ(x) ∈ C1(R), and the nonlinearity is typically given by

G(x, u) =
|u|p−1 u

(1 + x2)(a+1)/2
, (2.2)

where p > 1, a ≥ −1. When a = −1, Kato [9] showed that for any p > 1, the solution
for the problem blows up in finite time under certain positivity assumptions on initial
data in one space dimension. In addition, Zhou [19] obtained upper and lower bounds
of the lifespan in terms of the size of initial data in one space dimension. When a > −1,
then the situation becomes different as was shown by Suzuki [14] in one space dimension.
Indeed, when p > (1 +

√
5)/2 and pa > 1, the problem (2.1) has a global C2-solution

if ϕ and ψ are odd functions and their size are sufficiently small. On the other hand,
when −1 ≤ a ≤ 1 and p > 1, the blow-up occurs. In addition, Kubo, Osaka and Yazici
[10] obtained that when p > 1 and pa > 1, the solution exists globally if the initial data
is sufficiently small and odd.

Our aim is this section to answer what will happen for the case of p > 1 and a > 1.
We denote by T∗ the lifespan of the C2-solution to the problem (2.1), that is,

T∗ = sup
{
T ∈ (0,∞) : (2.1) with (2.2) has a solution u ∈ C2(R× [0, T ))

}
.

Now we are in a position to state our result.

Theorem 2.1. Let p > 1 and a ≥ −1. Assume that ϕ ≡ 0 and ψ(x) = εg(x) with

ε > 0. If g(x) ≥ 0 for all x ∈ R, and
∫ δ
δ/2
g(y)dy > 0 with some δ ∈ (0, 1), then there

exist constants ε0 > 0 and C > 0 such that

T∗ ≤ Cε−p
2

for 0 < ε ≤ ε0. (2.3)

It suffices to show that the solution to the following integral equation blows up in
finite time:

u(x, t) = u0(x, t) +
1

2

∫∫
Γ(x,t)

|u(y, s)|p

(1 + y2)(a+1)/2
dyds, (x, t) ∈ R× [0,∞). (2.4)

In order to prove that the solution to (2.4) blows up in finite time, we prepare a couple
of lemmas below. For l ≥ 1, we set Σ(l) = {(x, t) ∈ [0,∞)2 : t− x ≥ l}.
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Lemma 2.2. Let u ∈ C(R × [0,∞)) be the solution of (2.4). Then there exists a
constant C1 > 0, independent of ε, such that

u(x, t) ≥ C1ε
p, (x, t) ∈ Σ(1). (2.5)

Lemma 2.3. Let u ∈ C(R × [0,∞)) be the solution of (2.4) and let L > 0. If we set
T1 = max{3, 2 + 2〈1〉a+1(C1)−pε−p

2
L}, then we have u(x, t) ≥ L for (x, t) ∈ Σ(T1).

Lemma 2.4. Let u ∈ C(R × [0,∞)) be the solution of (2.4). Let A, T > 0 and
0 < h ≤ 1. If we set A

′
= 2−1〈1〉−(a+1)Aph2 and T

′
= T + 2h, then

u(x, t) ≥ A, (x, t) ∈ Σ(T ) (2.6)

implies
u(x, t) ≥ A

′
, (x, t) ∈ Σ(T

′
). (2.7)

3 Nonlinear Klein-Gordon equation in de Sitter space-

time

In this section, we are interested in the initial value problem for the semilinear Klein-
Gordon equation in the de Sitter spacetime,

∂2
t Φ + nΦt − e−2t∆Φ +m2Φ = F (Φ), (x, t) ∈ Rn × R,

Φ(x, 0) = ϕ0(x), ∂tΦ(x, 0) = ϕ1(x), x ∈ Rn,
(3.1)

where ϕ0, ϕ1 ∈ C∞0 (Rn), F is a smooth function and m > 0 is called physical mass.
In the Minkowski spacetime, the initial value problem for the semilinear Klein-

Gordon equation
utt −∆u+m2u = |u|α u,

has been extensively investigated. The existence of global weak solutions has been
obtained by Jörgens [7], Pecher [13], Brenner [4], Ginibre and Velo [5, 6]. In order to
use that the total energy remains constant for this equation, one needs the assumption
α < 4/(n − 1). On the other hand, the initial value problem for so-called Higgs boson
equation

utt −∆u−m2u = − |u|α u, (x, t) ∈ Rn × R

in the Minkowski spacetime, and

∂2
t Φ + nHΦt − e−2Ht∆Φ−m2Φ = − |Φ|α Φ, (x, t) ∈ Rn × R
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in the de Sitter spacetime are studied by Yagdjian [16], and some qualitative property
of the solution revealed if the global solution exists. In addition, it was shown in Baskin
[2] that the initial value problem for

∂2
t u+ n∂tu+

∂t
√
ht√
ht

∂tu+ e−2t∆htu+ λu+ |u|αu = 0, (y, t) ∈ Y × R

admits a small amplitude global solution in the energy space H1⊕L2, provided λ > n2/4
and α = 4/(n − 1). Here h is a smooth family of Riemannian metrices on compact n-
dimensional manifold Y, which is characterized as an asymptotically de Sitter spacetime.
The cases (α, n) = (4, 3) and (2, 4) are also considered by Baskin [1].

Turning back to the initial value problem (3.1), Yagdjian [17] showed the global exis-
tence in the Sobolev spaceHs(Rn) providedm ∈ (0,

√
n2 − 1/2)∪[n/2,∞), ‖ϕ0‖Hs(Rn)‖+

‖ϕ1‖Hs(Rn) is sufficiently small, s > n/2 and F (Φ) = |Φ|αΦ where α is a positive even
integer or α > s.

In Nakamura [12], the assumption on the regularity of the initial data is weakened
in the case of large mass, i.e., m ≥ n/2. On the contrary, we are interested in the case
of small mass, that is, 0 < m <

√
n2 − 1/2, and wish to strengthen the decay property

of the global solution. We give another proof based on the L∞ estimate.

Theorem 3.1. Let 0 < m <
√
n2 − 1/2, k be positive integer satisfying [([n/2] +

1 + k)/2] + 1 ≤ k and F (Φ) = |Φ|αΦ where α is a positive even integer. Assume
that ϕ0, ϕ1 ∈ WN,2(Rn) with N := [n/2] + 1 + k and their supports suppϕ0 ⊂ Rn,
suppϕ1 ⊂ Rn are compact. Then, there are constants ε0 > 0 and R > 0 such that if
‖ϕ0‖WN,2(Rn) + ‖ϕ1‖WN,2(Rn) ≤ ε for 0 < ε ≤ ε0, the problem in (3.1) has a solution Φ ∈
C([0,∞);W k,∞(Rn)) satisfying e(

n
2
−M)t‖Φ(., t)‖Wk,∞(Rn) ≤ Rε where M :=

√
n2

4
−m2.

In order to prove the theorem, we need the L∞ estimates for the solutions of the
linear Klein-Gordon equation with and without source term.

We introduce the fundamental solutions for the linear Klein-Gordon equation in the
de Sitter spacetime and give a representation of its solution. For (x0, t0) ∈ Rn+1 we
define the forward and backward light cones as follows:

D±(x0, t0) :=
{

(x, t) ∈ Rn+1 : |x− x0| ≤ ±(e−t0 − e−t)
}
.

We define

E(x, t;x0, t0;M) := (4e−t0−t)−M
(
(e−t + e−t0)2 − (x− x0)2

)− 1
2

+M

× F
(

1

2
−M,

1

2
−M ; 1;

(e−t0 − e−t)2 − (x− x0)2

(e−t0 + e−t)2 − (x− x0)2

)
,

for (x, t) ∈ D+(x0, t0) ∪ D−(x0, t0), where M =
√

n2

4
−m2. Here we used the notation

(x−x0)2 = (x−x0).(x−x0) for x, x0 ∈ Rn. The kernels K0(z, t;M) and K1(z, t;M) are
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defined by

K0(z, t;M) := −
[
∂

∂b
E(z, t; 0, b;M)

]
b=0

,

and K1(z, t;M) := E(z, t; 0, 0;M), that is

K1(z, t;M) := (4e−t)−M
(
(1 + e−t)2 − z2

)− 1
2

+M
F

(
1

2
−M,

1

2
−M ; 1;

(1− e−t)2 − z2

(1 + e−t)2 − z2

)
.

The kernels K0(z, t;M) and K1(z, t;M) play an important role in the derivation of basic
estimates for the linear Klein-Gordon equation in the de Sitter spacetime.

It was shown in [15] that the solution Φ = Φ(x, t) of the initial value problem

Φtt + nΦt − e−2t∆Φ +m2Φ = 0, Φ(x, 0) = ϕ0(x), Φt(x, 0) = ϕ1(x), (3.2)

with ϕ0, ϕ1 ∈ C∞0 (Rn) is given by

Φ(x, t) = e−
n−1
2
tvϕ0(x, φ(t))

+ e−
n
2
t

∫ 1

0

vϕ0(x, φ(t)s) (2K0(φ(t)s, t;M) + nK1(φ(t)s, t;M))φ(t)ds

+ e−
n
2
t

∫ 1

0

vϕ1(x, φ(t)s)(2K1(φ(t)s, t;M))φ(t)ds,

(3.3)

where φ(t) := 1− e−t with t > 0. Here, for ϕ ∈ C∞0 (Rn), vϕ(x, t) denotes the solution of

vtt −∆v = 0, v(x, 0) = ϕ(x), vt(x, 0) = 0, (x, t) ∈ Rn × (0,∞). (3.4)

Moreover, the solution Φ = Φ(x, t) of

Φtt+nΦt−e−2t∆Φ+m2Φ = f, Φ(x, 0) = 0, Φt(x, 0) = 0, (x, t) ∈ Rn×(0,∞), (3.5)

with f ∈ C∞(Rn+1) is given by

Φ(x, t) = 2e−
n
2
t

∫ t

0

db

∫ e−b−e−t

0

dre
n
2
bv(x, r; b)E(r, t; 0, b;M), (3.6)

where v(x, t; b) is the solution to the following initial value problem for the wave equation

vtt −∆v = 0, v(x, 0; b) = f(x, b), vt(x, 0; b) = 0, (x, t) ∈ Rn × (0,∞), (3.7)

where b > 0.
We derive L∞ estimates for the linear Klein-Gordon equation in the de Sitter space-

time.
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Theorem 3.2. Let ϕ0, ϕ1 ∈ C∞0 (Rn) and 0 < m <
√
n2−1
2

. Then the solution Φ = Φ(x, t)
of (3.2) satisfies the following estimate

‖Φ(., t)‖L∞(Rn) ≤ Ce(M−n
2

)t
(
‖ϕ0‖W [n/2]+1,1(Rn) + ‖ϕ1‖W [n/2]+1,1(Rn)

)
, (3.8)

for all t ∈ (0,∞). Here we put M =
√

n2

4
−m2.

Theorem 3.3. Let f ∈ C∞(Rn+1) and 0 < m <
√
n2−1
2

. Then the solution Φ = Φ(x, t)
of (3.5) satisfies the following estimate

‖Φ(., t)‖L∞(Rn) ≤ Ce−(n
2
−M)t

∫ t

0

e(n
2
−M)b ‖f(., b)‖W [n/2]+1,1(Rn) db, (3.9)

for all t ∈ (0,∞). Here we put M =
√

n2

4
−m2.

Since the local smooth solution of (3.1) exists, we need to derive a suitable apriori
estimate for proving the global solvability of (3.1). Let k be a positive integer satisfying
[([n/2] + 1 + k)/2] + 1 ≤ k. We assume that the solution of (3.1) satisfies

e(
n
2
−M)t‖Φ(., t)‖Wk,∞(Rn) ≤ Rε for t ∈ [0, T ), (3.10)

where R, T > 0 and ε > 0.
In order to estimate the nonlinear term F (Φ) we use the following lemma.

Lemma 3.4. Let F (Φ) = |Φ|α Φ with an even integer α > 0 and let k be as above. Then
we have

‖F (Φ)‖WN,1(Rn) ≤ C ‖Φ‖αWk,∞(Rn) ‖Φ‖WN,2(Rn) , (3.11)

where C is a positive constant.
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Poincarè 14 (2013), Issue 2, 221–252.

[3] H. Bateman, A. Erdelyi, “Higher Transcendental Functions”, 1,2, McGraw-Hill,
New York, 1953.

[4] P. Brenner, On the existence of global smooth solutions of certain semilinear hy-
perbolic equations, Math. Z. 167 (2) (1979), 99–135.

6



[5] J. Ginibre, G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon
equation, Math Z. 189(4) (1985), 487–505.

[6] J. Ginibre, G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon
equation II, Ann. Inst. H. Poincarè Anal. Linèaire 6(1) (1989), 15–35.
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