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1. Introduction

If we imagine a regular curve in R3
1, denote γ, and then imagine the set of all principal normal lines intersecting

this curve. Unless γ is a line, these lines will all meet some locus, in fact it is the locus of centres of curvatures of
γ, which we call the focal sets. It is obvious that the focal set would be a point or a new curve depending on how
our original given curves. Focal sets are useful to the study of certain optical phenomena (namely scattering, in fact
a rainbow is caused by caustics), expressing some geometrical results within fluid mechanics as well as describing
many medical anomalies [1–4], and so it is important to study the geometric properties related to the focal curve(i.e.,
the locus of focal set is a curve) of a curve.

It is well known that there exist spacelike curve, timelike curve and null curve in Minkowski spacetime. For non-
null curve in Minkowski space, many of the classical results from Riemannian geometry have Lorentz counterparts.
In fact, spacelike curves or timelike curves can be studied by approaches similar to those taken in positive definite
Riemannian geometry. Non-null curves in Minkowski space, regarding singularity, have been studied extensively
by, among others, the second author and by Izumiya et al.[5–10]. The importance of the study of null curves and
its presence in the physical theories are clear [4, 11–18]. Nersessian and Ramos [19] also show us that there exists a
geometrical particle model based entirely on the geometry of the null curves in Minkowskian 4-dimensional spacetime
which under quantization yields the wave equations corresponding to massive spinning particles of arbitrary spin.
They have also studied the simplest geometrical particle model which is associated with null curves in Minkowski 3-
space[20]. However, null curves have many properties which are very different from spacelike and timelike curves[11,
21, 22]. In other words, null curve theory has many results which have no Riemannian analogues. In geometry of null
curves difficulties arise because the arc length vanishes, so that it is impossible to normalize the tangent vector in the
usual way. Bonner introduces the Cartan frame as the most useful one and he uses this frame to study the behaviors
of a null curve[23]. Thus, one can use these fundamental results as the basic tools in researching the geometry of
null curves. However, to the best of the authors’ knowledge, the singularities of surfaces and curves as they relate
to null Cartan curves(see Section 2) have not been considered in the literature, aside from our studies in de Sitter
3-space [24, 25]. Thus, the current study hopes to serve such a need, in this article, we study the focal surfaces and
the binormal indicatrix associated with a null Cartan curve in Minkowski 3-space from the standpoint of singularity
theory .

2. Preliminaries

Let R3
1 denote the 3-dimensional Minkowski space, that is to say, the manifold R3 with a flat Lorentz metric ⟨, ⟩ of

signature (−,+,+), for any vectors x = (x1, x2, x3) and y = (y1, y2, y3) in R3, we set ⟨x, y⟩ = −x1y1 + x2y2 + x3y3. We
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also define a vector

x ∧ y =

∣∣∣∣∣∣∣∣
−e1 e2 e3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣∣∣ ,
where (e1, e2, e3) is the canonical basis of R3

1.We say that a vector x ∈ R3
1\{0} is spacelike, null or timelike if ⟨x, x⟩ is

positive, zero or negative, respectively. The norm of a vector x ∈ R3
1 is defined by ∥ x ∥=

√
|⟨x, x⟩|.We call x a unit

vector if ∥ x ∥= 1.
Let γ : I → R3

1 be a smooth regular curve in R3
1 (i.e., γ̇(t) , 0 for any t ∈ I), parametrized by an open interval I.

For any t ∈ I, the curve γ is called a spacelike curve, a null(lightlike) curve or a timelike curve if all its velocity vector
satisfy ⟨γ̇(t), γ̇(t)⟩ > 0, ⟨γ̇(t), γ̇(t)⟩ = 0 or ⟨γ̇(t), γ̇(t)⟩ < 0, respectively. We call γ a non-null curve if γ is a timelike
curve or a spacelike curve.

Let γ : I → R3
1 be a null curve in R3

1 (i.e., ⟨γ̇(t), γ̇(t)⟩ = 0 for any t ∈ I). Now suppose that γ is framed by a null
frame . A null frame F = {ξ = dγ

dt ,N, B} at a point of R3
1 is a positively oriented 3-tuple of vectors satisfying

⟨ξ, ξ⟩ = ⟨B, B⟩ = 0, ⟨ξ, B⟩ = 1,

⟨ξ,N⟩ = ⟨B,N⟩ = 0, ⟨N,N⟩ = 1.

The Frenet formula of γ with respect to F is given by
dξ
dt = −hξ + k1N
dB
dt = hB + k2N
dN
dt = −k2ξ − k1B.

(2.1)

The functions h, k1 and k2 are called the curvature functions of γ (cf.[11]). Employing the usual terminology, the
spacelike unit vector filed N will be called the principal normal vector filed. The null vector filed B is called the
binormal vector filed. Null frames of null curves are not uniquely determined. Therefore, the curve and a frame must
be given together.

There always exists a parameter s of γ such that h = 0 in Eqs.(2.1). This parameter is called a distinguished
parameter of γ, which is uniquely determined for prescribed screen vector bundle (i.e. a complement in ⟨ dγ

dt ⟩⊥ to ⟨ dγ
dt ⟩)

up to affine transformation[11].
Let γ(s) be a null curve with a distinguished parameter in R3

1(i.e. h = 0 in Eqs.(2.1)). Moreover we assume that
γ′(s), γ′′(s), γ′′′(s) are linearly independent for all s. Then we consider the basis E = {γ′(s), γ′′(s), γ′′′(s)} such that
⟨γ′′(s), γ′′(s)⟩ = k1(s) = 1. We choose the ξ = dγ

ds ,N = γ
′′, then there exists only one null frame F = {ξ,N, B} for

which γ(s) is a framed null curve with Frenet equations [11]:
dξ
ds = N
dB
ds = k2N
dN
ds = −k2ξ − B,

(2.2)

where ξ = dγ
ds ,N = γ

′′, B = −γ′′′ − k2γ
′, k2 =

1
2 ⟨γ′′′, γ′′′⟩. We call Eqs.(2.2) the Cartan Frenet equations and γ(s) their

null Cartan curve[11]. We remark that the curvature function k2 is an invariant under Lorentzian transformations.
In case γ is a null Cartan curve, labeling k2(s) = k(s), then the Frenet formula of γ(s) with respect to F = {ξ,N, B}

becomes 
dξ
ds = N(s)
dB
ds = k(s)N(s)
dN
ds = −k(s)ξ(s) − B(s).

(2.3)

This frame satisfies
ξ(s) ∧ B(s) = N(s), N(s) ∧ ξ(s) = ξ(s), B(s) ∧ N(s) = B(s).
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Now we define surface FS : I × R→ R3
1 by

FS(s, µ) = γ(s) +
1

k(s)
N(s) + µB(s).

We call FS(s, µ) the Focal surface of null Cartan curve γ. We define the 2-dimensional future lightcone vertex at v0
by

LC∗+(v0) = {x ∈ R3
1 : ⟨x − v0, x − v0⟩ = 0, x0 > 0}.

When v0 is the null vector 0, we simply denote LC∗+(0) by LC∗+.
Let γ : I → R3

1 be a regular null Cartan curve. We define the binormal normal indicatrix of γ(s) as the map
BIγ : I → LC∗+ given by

BIγ(s) = B(s)

and the focal curve of γ(s) as the map Fγ : I → R3
1 given by

Fγ(s) = γ(s) +
1

k(s)
N(s).

Defining the set: for any v0 ∈ R3
1,T PB(v0) = {u ∈ R3

1|⟨u − v0, B(s)⟩ = 0}\{v0}, we call it the tangential planar bundle
of lightcone through v0. It is obvious that the lightcone LC∗+(v0) is the envelope of the tangential planar bundle.

We give a geometric invariant σ of a null Cartan curve in R3
1 by

σ(s) = k3(s) + 3k′2(s) − k(s)k′′(s),

which are related to the geometric meanings of the singularities of the focal surface.
We shall assume throughout the whole article that all the maps and manifolds are C∞ unless the contrary is

explicitly stated.

3. Volumelike distance function and lightcone height function of null Cartan curve

The purpose of this section is to obtain one geometric invariants of null Cartan curves by constructing a family of
functions of the null Cartan curve.

Let γ : I → R3
1 be a regular null Cartan curve with k(s) , 0. We define a three-parameter family of smooth

functions
D : I × R3

1 → R

by D(s, v) = |B(s) N(s) γ(s) − v| = ⟨γ(s) − v, B(s)⟩. Here, |a b c| denotes the determinant of matrix (a b c). We call
D the volumelike distance function of null Cartan curve γ.We denote that dv(s) = D(s, v) for any fixed vector v in R3

1.
Using Eqs.(2.3) and making a simple calculation, we can state the following facts.

Proposition 3.1. Suppose γ : I → R3
1 is a regular null Cartan curve with k(s) , 0 and v ∈ R3

1. Then
(1) dv(s) = 0 if and only if there exist real numbers λ, ω such that γ(s) − v = µB(s) + ωN(s).
(2) dv(s) = d′v(s) = 0 if and only if v = γ(s) + (1/k(s))N(s) − µB(s).
(3) dv(s) = d′v(s) = d′′v (s) = 0 if and only if v = γ(s) + (1/k(s))N(s) + (k′(s)/k3(s))B(s).
(4) dv(s) = d′v(s) = d′′v (s) = d′′′v (s) = 0 if and only if v = γ(s) + (1/k(s))N(s) + (k′(s)/k3(s))B(s) and σ(s) =
k3(s) + 3k′2(s) − k(s)k′(s) = 0.
(5) dv(s) = d′v(s) = d′′v (s) = d′′′v (s) = d(4)

v = 0 if and only if v = γ(s) + (1/k(s))N(s) + (k′(s)/k3(s))B(s) and
σ(s) = σ′(s) = 3k2(s)k′(s) + 5k(s)k′′(s) − k2(s)k′′′(s) = 0.

Let γ : I → R3
1 be a regular null Cartan curve. We define a two-parameter family of functions

H : I × LC∗+ → R

by H(s, v) = ⟨γ(s), v⟩ − s.We call H the lightcone height functions of null Cartan curve γ(s). We denote that hv(s) =
H(s, v) for any fixed vector v in LC∗+.We have the following proposition.
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Proposition 3.2. Suppose γ : I → R3
1 is a regular null Cartan curve and v ∈ LC∗+. Then

(1) h′v(s) = 0 if and only if there exist real numbers λ, ω such that v = λξ(s) + B(s) + ωN(s) and 2λ + ω2 = 0.
(2) h′v(s) = h′′v (s) = 0 if and only if v = B(s).
(3) h′v(s) = h′′v (s) = h′′′v (s) = 0 if and only if v = B(s) and k(s) = 0.
(4) h′v(s) = h′′v (s) = h′′′v (s) = h(4)

v (s) = 0 if and only if v = B(s) and k(s) = k′(s) = 0.

Proposition 3.3. Let γ : I → R3
1 be a regular null Cartan curve with k(s) , 0. Then

(1) The singularities of FS is the set
{
(s, µ)| µ = k′(s)

k3(s) , s ∈ I
}
.

(2) If FS(s, k′(s)
k3(s)
)
= v0 is a constant vector, then Fγ(s) is in T PB(v0) for any s in I and σ(s) = k3(s) + 3k′2(s) −

k(s)k′′(s) ≡ 0.

This work is only a preparation for further studying, in the following, we will discuss some geometrical properties
of null Cartan curve from singularity theory viewpoint.
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