開講学期/Course Start | 2023年度/Academic Year 後期/Second |
---|---|
開講曜限/Class period | 水/Wed 7 , 水/Wed 8 |
授業区分/Regular or Intensive | 週間授業 |
対象学科/Department | システム理化学科 |
対象学年/Year | 1年 , 2年 , 3年 , 4年 |
授業科目区分/Category | 教育課程 システム理化学科 |
必修・選択/Mandatory or Elective | 必修 |
授業方法/Lecture or Seminar | 講義科目 |
授業科目名/Course Title | 微分積分B(Eクラス)/Differential and Integral B |
単位数/Number of Credits | 2 |
担当教員名/Lecturer | 加藤 正和 (システム理化学科数理情報システムコース) |
時間割コード/Registration Code | J2058 |
連絡先/Contact |
加藤 正和(教員室 : Q404 e-mail : mkato@mmm.muroran-it.ac.jp) |
オフィスアワー/Office hours | 加藤 正和(月曜日 13:00~14:00) |
実務経験/Work experience |
更新日/Date of renewal | 2023/08/17 |
---|---|
授業のねらい /Learning Objectives |
●理工学部のどの課程でも必要となる数学の基礎知識の1つである微分積分学に関する内容を講義する。 ●微分積分Bでは1変数関数の積分法および多変数関数の極限・連続性・偏微分法を理解することを目的とする。 |
到達度目標 /Outcomes Measured By: |
1. 1変数関数の2つの積分、定積分・不定積分の概念と性質を理解し、計算することが出来る。 2. 置換積分法や部分積分法を用いて、与えられた関数に対して、定積分、不定積分を求めることが出来る。 3. 広義積分の概念を理解し、与えられた広義積分の収束・発散を調べることが出来る。 4. 多変数関数の極限や連続性について理解することが出来る。 5. 偏微分・全微分の概念を理解し、計算と応用が出来る。 6. 多変数関数の極値を求めることが出来る。 |
授業計画 /Course Schedule |
総授業時間数(実時間):22.5時間 第1回:2変数関数の極限と連続性 第2回:偏微分可能性と偏導関数 第3回:全微分可能性、全微分と接平面 第4回:連鎖律 (chain rule) 第5回:高次導関数 第6回:Taylor展開とMaclaurin展開 第7回:極値問題 第8回:1変数関数の定積分 (Riemann積分) の定義と性質 第9回:1回から7回の講義内容の復習と中間試験 第10回:微分積分学の基本定理 第11回:置換積分法と部分積分法 第12回:部分分数分解を用いた積分 第13回:有理関数の積分と無理関数を含む関数の積分 第14回:三角関数の有理式の積分、漸化式 第15回:広義積分 定期試験 ・教科書の該当部分(授業時間内に指示する)を予め理解した上で授業に参加すること。 ・weBWorKによる演習を課します。 ・各回の学修時間の目安は, 事前・事後合わせて4時間必要です。 |
教科書 /Required Text |
微分積分(高坂 良史・ 加藤 正和・黒木場 正城・高橋 雅朋 共著、学術図書出版社)(ISBN:9784780606447) |
教科書・参考書に関する備考 |
教科書は微分積分Aで使用した教科書を使用します。 関連図書は数多く出版されているので図書館などで自分にあった本を探し、参考にしてください。必要があれば適宜紹介します。 |
成績評価方法 /Grading Guidelines |
●webwork、中間試験と定期試験を行う。 ●単位を取得する為の必要条件は中間試験かつ期末試験を受験する事とする。 ●webwork を15点、中間試験を35点、定期試験を50点に換算した合計100点で成績を評価する。そのうえで60点以上を合格とする。 ●各到達度目標は中間試験、定期試験において定義、計算問題などを出題し達成度を評価する。 |
履修上の注意 /Notices |
●授業の変更などの連絡はmoodleまたは掲示板または授業中に通知する。 ●再試験を1回行うが、100点満点で60点以上を合格とする。再試験合格者の成績は試験の得点に関わらず60点とする。 ●再試験を受験する為の必要条件は、中間試験かつ定期試験を受験する事とする。 ●出欠の状況は、成績には関係しません。 ●最終的に不合格になった者は、再履修すること。 |
教員メッセージ /Message from Lecturer |
講義での疑問点などは、そのままにせずに気軽に質問して下さい. |
学習・教育目標との対応 /Learning and Educational Policy |
学生便覧「学習目標と授業科目との関係表」参照 |
関連科目 /Related course |
1年次前期の微分積分Aを学んでいることを前提として講義を行う。 2年次前期の微分積分C(重積分・微分方程式)において、本講義で学んだ知識を用いる。 |
備考 /Notes |
本科目は,文部科学省による数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル)の認定に基づく,数理データサイエンス教育プログラムの教育科目として実施されます。数理基礎科目群に含まれ,数理科学の基盤的な内容を学びます。プログラム内容については,学生便覧の数理データサイエンス教育プログラムを参照してください。 DSポイント:2ポイント |
No. | 回(日時) /Time (date and time) |
主題と位置付け(担当) /Subjects and instructor's position |
学習方法と内容 /Methods and contents |
備考 /Notes |
---|---|---|---|---|
該当するデータはありません |
Active learning 1-1 /主体的学修(反転授業,小テスト,振り返り 等) |
講義毎にwebwork、演習問題を課す。 |
---|---|
Active learning 1-2 /上記項目に係るALの度合い |
15%~50% |
Active learning 2-1 /対話的学修(グループ学習,協働,調査体験 等) |
学生間、教員-学生間での議論を推奨する。講義中の質問を推奨する。 |
Active learning 2-2 /上記項目に係るALの度合い |
15%~50% |
Active learning 3-1 /深い学修(複数科目の知識の総合化や問題解決型学修 等) |
微分積分A、Cなどで学ぶ内容との関連性に注意しながら講義を行う。 |
Active learning 3-2 /上記項目に係るALの度合い |
15%~50% |