授業情報/Course information

開講学期/Course Start 2023年度/Academic Year   前期/First
開講曜限/Class period 木/Thu 7 , 木/Thu 8
授業区分/Regular or Intensive 週間授業
対象学科/Department 創造工学科/Department of Engineering,創造工学科創造工学科/Department of EngineeringDepartment of Engineering,創造工学科建築土木工学コース/Department of EngineeringCourse of Architecture and Civil Engineering,創造工学科建築土木工学コース建築学トラック/Department of EngineeringCourse of Architecture and Civil EngineeringArchitecture and Building Engineering Track,創造工学科建築土木工学コース土木工学トラック/Department of EngineeringCourse of Architecture and Civil EngineeringCivil Engineering Track,創造工学科機械ロボット工学コース/Department of EngineeringCourse of Robotics and Mechanical Engineering,創造工学科航空宇宙工学コース/Department of EngineeringCourse of Aerospace Engineering,創造工学科電気電子工学コース/Department of EngineeringCourse of Electrical and Electronic Engineering,システム理化学科/Department of Sciences and Informatics,システム理化学科システム理化学科/Department of Sciences and InformaticsDepartment of Sciences and Informatics,システム理化学科物理物質システムコース/Department of Sciences and InformaticsCourse of Physics and Materials Sciences,システム理化学科化学生物システムコース/Department of Sciences and InformaticsCourse of Chemical and Biological Systems,システム理化学科数理情報システムコース/Department of Sciences and InformaticsCourse of Mathematical Science and Informatics
対象学年/Year 1年 , 2年 , 3年 , 4年
授業科目区分/Category 教育課程 創造工学科
必修・選択/Mandatory or Elective 必修
授業方法/Lecture or Seminar 講義科目
授業科目名/Course Title 微分積分A(Aクラス)/Differential and Integral A
単位数/Number of Credits 2
担当教員名/Lecturer 可香谷 隆 (システム理化学科数理情報システムコース)
時間割コード/Registration Code J2009
連絡先/Contact 可香谷 隆(可香谷隆 (研究室: Q411,E-mail: kagaya@muroran-it.ac.jp))
オフィスアワー/Office hours 可香谷 隆(毎週火曜日 12:55から14:25まで)
実務経験/Work experience
更新日/Date of renewal 2023/04/05
授業のねらい
/Learning Objectives
●理工学部のどの課程でも必要となる数学の基礎知識の1つである微分積分学に関する内容を講義する。
●微分積分Aでは初等関数の基本性質について理解し、1変数関数の極限・連続性・微分法を理解することを目的とする。
到達度目標
/Outcomes Measured By:
1. べき関数、多項式、三角関数、逆三角関数、指数関数、対数関数などの基本的な関数の性質が理解できる。また、それらの関数に関連した極限を求めることが出来る。
2. 1変数関数の連続性と微分の概念を理解し、関数に対して連続性と導関数の導出を行うことが出来る。
3. 1変数関数のTaylorの定理を理解し、関数に対してTaylor展開を行うことが出来る。また、Taylor展開を応用して、関数値の近似値を求めることが出来る。
4. 1変数関数の極値を求めることが出来る。
授業計画
/Course Schedule
総授業時間数(実時間):22.5時間

第1回:実数の性質と諸概念
第2回:関数の定義と性質
第3回:関数の極限
第4回:連続関数の定義と性質
第5回:逆関数
第6回:初等関数1(指数関数、対数関数)
第7回:初等関数2(三角関数、逆三角関数)
第8回:1回から7回の講義内容の復習と中間試験
第9回:微分の定義と性質
第10回:初等関数の微分1(合成関数の微分)
第11回:初等関数の微分2(逆関数の微分)
第12回:高次導関数
第13回:平均値の定理とロピタルの定理
第14回:テイラー展開とマクローリン展開
第15回:1変数関数の極値
定期試験

各回の学修時間の目安は、事前・事後合わせて4時間程度必要とする。
また、演習、レポートを課す。

新型コロナウイルス感染症の流行状況に伴い、学生への十分な周知のもと、授業計画・授業実施方法は変更する可能性があります。
教科書
/Required Text
微分積分 高坂良史 [ほか] 共著  学術図書出版社 2018(ISBN:9784780606447)
教科書・参考書に関する備考 微分積分に関する本は数多く出版されているので図書館などで自分にあった本を探し、参考にしてください。
教科書は微分積分B、微分積分Cでも使うので、紛失しないようにしてください。
成績評価方法
/Grading Guidelines
●中間試験と定期試験を行う。
●中間試験40%、定期試験60%の割合で換算し、100点満点として評価する。ただし、各試験の点数は10%程度のレポート点を含む。そのうえで60点以上を合格とする。
●各到達度目標の評価方法は、中間試験・定期試験において定義、計算問題を出題し、達成度を評価する。
●新型コロナウイルス感染症の流行状況に伴い、学生への十分な周知のもと、成績評価方法は変更する可能性があります。
履修上の注意
/Notices
●演習やレポート等は必ず指定された日時までに提出してください。
●中間試験や補講等の連絡はMoodleを主に用いるので、各自確認してください。
●中間試験、定期試験を正当な理由で欠席した場合は学務課に欠席届けを提出し、担当教員にe-mailで速やかに報告すること。欠席理由が正当な場合、追試験等の措置を講ずる。
●再試験を実することがあるが、受けるためには、中間試験・定期試験の受験と一定数の演習・レポートの提出が必須である。再試験合格者の成績は試験の得点に関わらず60点とする。
●最終的に不合格になった者は、再履修すること。
教員メッセージ
/Message from Lecturer
講義の予習・復習をするように心掛けて下さい。
連絡事項はMoodleに掲載しますので、忘れずに登録して下さい。
講義の質問等あればQ411可香谷研究室に来て頂くか、以下までメールをして下さい。
E-mail: kagaya@mmm.muroran-it.ac.jp
学習・教育目標との対応
/Learning and Educational Policy
学生便覧「学習目標と授業科目との関係表」参照
関連科目
/Related course
1年次後期の微分積分B、2年次前期の微分積分Cにおいて偏微分、積分、重積分、微分方程式を学ぶ。
備考
/Notes
疑問や質問などあれば研究室かE-mailにて対応します。
オフィスアワー以外にも在室時には対応します。

本科目は,文部科学省による数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル)の認定に基づく,数理データサイエンス教育プログラムの教育科目として実施されます。数理基礎科目群に含まれ,数理科学の基盤的な内容を学びます。プログラム内容については,学生便覧の数理データサイエンス教育プログラムを参照してください。
DSポイント:2ポイント
No. 回(日時)
/Time (date and time)
主題と位置付け(担当)
/Subjects and instructor's position
学習方法と内容
/Methods and contents
備考
/Notes
該当するデータはありません
Active learning 1-1
/主体的学修(反転授業,小テスト,振り返り 等)
講義毎に配布される演習問題にて復習すること。
Active learning 1-2
/上記項目に係るALの度合い
50%超
Active learning 2-1
/対話的学修(グループ学習,協働,調査体験 等)
演習時間中の学生同士の議論を推奨する。
Active learning 2-2
/上記項目に係るALの度合い
15%~50%
Active learning 3-1
/深い学修(複数科目の知識の総合化や問題解決型学修 等)
講義中に説明する概念・定理の背景や動機についても説明する。
Active learning 3-2
/上記項目に係るALの度合い
15%~50%