開講学期/Course Start | 2020年度/Academic Year 前期/First |
---|---|
開講曜限/Class period | 水/Wed 1,水/Wed 2 |
授業区分/Regular or Intensive | 週間授業 |
対象学科/Department | 全学科 |
対象学年/Year | 2年,3年,4年 |
授業科目区分/Category | 教職課程 |
必修・選択/Mandatory or Elective | 選択 |
授業方法/Lecture or Seminar | 講義科目 |
授業科目名/Course Title | (教職)数学教育法A |
単位数/Number of Credits | 2.0 |
担当教員名/Lecturer | 阿知良 洋平 |
時間割コード/Registration Code | F1956 |
連絡先/Contact | 前田 潤(前田潤:maedaj@mmm.muroran-it.ac.jp) |
オフィスアワー/Office hours | 前田 潤(前田潤:(水)13:00−14:00) |
実務経験/Work experience | 前田 潤(医療、教育機関で精神疾患、その他身体疾患患者、小中高生、保護者教員への心理学的専門知識・技能の提供を行う経験を有する) |
更新日/Date of renewal | 2020/01/28 |
---|---|
授業のねらい /Learning Objectives |
高等学校数学科の教育目的を理解するとともに、高等学校で学習する数学Ⅰ・数学Ⅱ・数学Ⅲ、数学A・数学B・数学Cの内容と大学で学習してきた数学との関連付けをはかることを目的とする。現代数学の立場から、高等学校数学科を代数学、幾何学、解析学、数理統計学(確率論を含む)等の分野に分けて論じ、あわせて授業設計の方法を概説する。 |
到達度目標 /Outcomes Measured By: |
(1)現代数学の立場からその教授法を学び、数学教材分析と授業設計を学ぶ。 (2)基礎的な学習指導理論を理解し、具体的な授業場面を想定した授業設計を行う方法を身に付ける。 |
授業計画 /Course Schedule |
第1回 高校数学の目的・目標の概観 第2回 代数的内容の系統性及び教材化(1)-導入と展開 第3回 代数的内容の系統性及び教材化(2)-まとめと評価 第4回 幾何的内容の系統性及び教材化(1)-導入と展開 第5回 幾何的内容の系統性及び教材化(2)-まとめと評価 第6回 解析的内容の系統性及び教材化(1)-導入と展開 第7回 解析的内容の系統性及び教材化(2)-まとめと評価 第8回 統計的内容の系統性及び教材化(1)-導入と展開 第9回 統計的内容の系統性及び教材化(2)-まとめと評価 第10回 数学科の教授・学習の理論と実践 第11回 数学教材分析と授業設計(1)-代数・幾何 第12回 数学教材分析と授業設計(2)-解析・統計 第13回 数学教材分析と授業設計(3)-その他、総合的な教材 第14回 評価・授業改善の研究について(1)-評価を中心に 第15回 評価・授業改善の研究について(2)-教員の研修機会 |
教科書 /Required Text |
特に指定しない。必要なプリントを配布する。 |
参考書等 /Required Materials |
『高等学校学習指導要領解説 理科編』
その他、授業中に適宜紹介する。 |
成績評価方法 /Grading Guidelines |
毎回の授業についての質問・意見・感想および授業後に提出するレポートの評価によって以下の事項についての理解を確認し、成績の評定を行う。 (1)高等学校数学科の教育目標・内容(30%相当) (2)現代数学の立場からその教授法(30%相当) (3)数学教材分析と授業設計(40%相当) 60点以上合格。 |
No. | 回(日時) /Time (date and time) |
主題と位置付け(担当) /Subjects and instructor's position |
学習方法と内容 /Methods and contents |
備考 /Notes |
---|---|---|---|---|
該当するデータはありません |
Active learning 1-1 /主体的学修(反転授業,小テスト,振り返り 等) |
|
---|---|
Active learning 2-1 /対話的学修(グループ学習,協働,調査体験 等) |
|
Active learning 3-1 /深い学修(複数科目の知識の総合化や問題解決型学修 等) |