開講学期/Course Start | |
---|---|
開講曜限/Class period | |
授業区分/Regular or Intensive | |
対象学科/Department | |
対象学年/Year | |
授業科目区分/Category | |
必修・選択/Mandatory or Elective | |
授業方法/Lecture or Seminar | |
授業科目名/Course Title | |
単位数/Number of Credits | |
担当教員名/Lecturer | |
時間割コード/Registration Code | MQ317 |
連絡先/Contact | 佐賀聡人(教員室:V501 連絡先E-mail: saga@csse.muroran-it.ac.jp) |
オフィスアワー/Office hours | 佐賀聡人(金曜日 14:00-15:00) |
実務経験/Work experience |
更新日/Date of renewal | 2020/06/29 |
---|---|
授業のねらい /Learning Objectives |
This subject is designed for students to carefully consider cognitive mechanisms of humans by taking up a rough-symmetry detection problem in natural images as an example. |
到達度目標 /Outcomes Measured By: |
1. Get ability to run several algorithms about image processing. 2. Get ability to perform some experiments on cognitive mechanisms. 3. Get ability to make some discussions on cognitive mechanisms. |
授業計画 /Course Schedule |
Total hours: 22.5 No. 1 Image feature point detection (1) [lecture] No. 2 Image feature point detection (2) [lecture] No. 3 Implementation of feature point detection (1) [exercise] No. 4 Implementation of feature point detection (2) [exercise] No. 5 Experiment on feature point detection (1) [exercise] No. 6 Experiment on feature point detection (2) [exercise] No. 7 Hough transform and line detection [lecture] No. 8 Fuzzy model for feature points [lecture] No. 9 Fuzzy-symmetry detection algorithm (1) [lecture] No. 10 Fuzzy-symmetry detection algorithm (2) [lecture] No. 11 Installation of fuzzy-symmetry detection program [exercise] No. 12 Experiment on fuzzy-symmetry detection (1) [exercise] No. 13 Experiment on fuzzy-symmetry detection (2) [exercise] No. 14 Experiment on fuzzy-symmetry detection (3) [exercise] No. 15 Presentations and discussions [lecture] 新型コロナウイルス感染症の流行状況に伴い、学生への十分な周知のもと、授業計画・授業実施方法は変更する可能性があります。 Due to the epidemic situation of COVID19, the plan and implementation method may be changed. In that case, I will explain to you properly. |
教科書・参考書に関する備考 | Materials will be distributed in the class as needed. |
成績評価方法 /Grading Guidelines |
To pass the course, 60 marks or more are required out of a maximum 100. The marks of each student are given based on the submitted reports. 新型コロナウイルス感染症の流行状況に伴い、学生への十分な周知のもと、成績評価方法は変更する可能性があります。 Due to the epidemic situation of COVID19, the evaluation method may be changed. In that case, I will explain to you properly. |
履修上の注意 /Notices |
|
教員メッセージ /Message from Lecturer |
|
学習・教育目標との対応 /Learning and Educational Policy |
This course is relate to all the educational policies of Computer Systemics Course and Intelligent Informatics Cource in Division of Information and Electronic Engineering. |
関連科目 /Related course |
Advanced Cognitive Information Processing A |
備考 /Notes |
Used language: Japanese |
No. | 回(日時) /Time (date and time) |
主題と位置付け(担当) /Subjects and instructor's position |
学習方法と内容 /Methods and contents |
備考 /Notes |
---|---|---|---|---|
該当するデータはありません |
Active learning 1-1 /主体的学修(反転授業,小テスト,振り返り 等) |
|
---|---|
Active learning 1-2 /上記項目に係るALの度合い |
該当なし |
Active learning 2-1 /対話的学修(グループ学習,協働,調査体験 等) |
|
Active learning 2-2 /上記項目に係るALの度合い |
該当なし |
Active learning 3-1 /深い学修(複数科目の知識の総合化や問題解決型学修 等) |
|
Active learning 3-2 /上記項目に係るALの度合い |
該当なし |