授業情報/Course information

開講学期/Course Start 2020年度/Academic Year  後期/Second
開講曜限/Class period 火/Tue 9,火/Tue 10
授業区分/Regular or Intensive 週間授業
対象学科/Department 生産システム工学系専攻応用物理学コース
対象学年/Year 1年,2年
授業科目区分/Category 博士前期課程 大学院自専攻科目
必修・選択/Mandatory or Elective 選択
授業方法/Lecture or Seminar 講義科目
授業科目名/Course Title 固体物性特論A
単位数/Number of Credits 1.0
担当教員名/Lecturer 戎  修二
時間割コード/Registration Code MQ256
連絡先/Contact 戎 修二(K402 ebisu@mmm.muroran-it.ac.jp 0143-46-5620)
オフィスアワー/Office hours 戎 修二(金曜日 16:00-18:00;時間外でも都合がつけば対応します)
実務経験/Work experience
更新日/Date of renewal 2020/09/10
授業のねらい
/Learning Objectives
固体を結晶か非結晶(アモルファス)かに大別することがある。この講義では結晶としての固体をを取り扱う。電子材料の多くは、構成原子の外殻電子状態に機能発現の鍵を持っており、この電子状態はどのような対称性を持った結晶中に原子が置かれているかによって大きく変わる。対称性を扱う学問である群論の、固体物性学への応用は有益である。また固体物性学に関連する論文を読む際、群論の知識がないと理解が困難な記述に遭遇することも多い。この講義では群論の基礎を修得し、群の表現に慣れ、固体物性学への応用事例を学ぶ。 
Solids are classified into crystalline and amorphous substances. We deal with crystalline solids in this lecture. The function of most electronic materials originates from the outer-shell electronic states in constituent atoms, which are greatly affected by configuration of surrounding atoms, namely a symmetry of the crystal structure. The application of the study “group theory”, which deals with symmetry, in solid state physics is useful. You may occasionally encounter difficulties about understandings of expressions in articles related to solid state physics because of your lack of knowledge about the group theory. Aims of this lecture are learning of basis of the group theory, being familiar with its expressions and learning of its application in solid state physics.
到達度目標
/Outcomes Measured By:
1. 結晶としての固体を扱う際の、対称性の重要性を説明できる。
2. 群の概念を説明できる。
3. 対称操作による関数の変換ができる。
これらに対する到達度は、レポートにより評価する。
1. Ability to explain about importance of symmetry when dealing with crystalline solids
2. Ability to explain concept of group
3. Ability to transform functions by symmetry operations
These outcomes are measured by a report.
授業計画
/Course Schedule
総授業時間数(実時間):11.25時間
Total lecture hours (actual time): 11.25 hours
第1週 対称性と群
第2週 群論の有益性(例1)
第3週 群論の有益性(例2)
第4週 群の概念
第5週 積表
第6週 部分群、
第7週 共役な元、類
第8週 対称操作による関数の変換
1st week: Symmetry and group
2nd week: Usefulness of group theory (example 1)
3rd week: Usefulness of group theory (example 2)
4th week: Concept of group, Multiplication table
5th week: Multiplication table, Subgroup, Conjugate elements, Class
6th week: Subgroup, Conjugate elements, Class
7th week: Conjugate elements, Class
8th week: Transformation of functions associated with symmetry operations

授業においては演習も行いますが、毎週の内容を十分に理解していなければ,演習問題を
解くことはできません。自己学習により、内容をよく理解すること。
Exercises are also conducted in the class.
If you do not sufficiently understand the contents of each week, you cannot solve them.
Self-learning after each class is strongly recommended.

新型コロナウイルス感染症の流行状況に伴い、学生への十分な周知のもと、授業計画・授業実施方法は変更する可能性があります。
Due to the epidemic situation of COVID19, the plan and implementation method may be changed.
In that case, I will explain to you properly.
教科書
/Required Text
物性物理/物性化学のための群論入門 小野寺嘉孝著  裳華房 1996(ISBN:4785328061)
参考書等
/Required Materials
物性物理学のための群論入門 G. バーンズ著 ; 中村輝太郎, 澤田昭勝訳  培風館 1983(ISBN:4563021539)
応用群論 : 群表現と物理学 犬井鉄郎, 田辺行人, 小野寺嘉孝共著  裳華房 1980(ISBN:4785328010)
Group theory and its applications in physics T. Inui, Y. Tanabe, Y. Onodera  Springer-Verlag 1996(ISBN:3540604456)
Introduction to group theory with applications Gerald Burns  Academic Press 1977(ISBN:0121457508)
物質の対称性と群論 今野豊彦著  共立出版 2001(ISBN:4320034090)
成績評価方法
/Grading Guidelines
レポートにより評価し、60点以上を合格とする。
不合格者のうちこの科目の単位を希望する者は再履修しなければならない。
The score of each student is evaluated by report. A grade of more than 60 is accepted for two credits.
The failure who hope to acquire the credits must take the course again.

新型コロナウイルス感染症の流行状況に伴い、学生への十分な周知のもと、成績評価方法は変更する可能性があります。
Due to the epidemic situation of COVID19, the evaluation method may be changed.
In that case, I will explain to you properly.
履修上の注意
/Notices
量子力学を復習しておくこと。 
It is recommended to review quantum mechanics.

授業の変更や緊急時の連絡はメールで通知する。
Sudden changes about class will be notified by e-mail.
教員メッセージ
/Message from Lecturer
固体物性学に関連する論文や書籍の中で、ことわりなく群論の表現が出て来ることも多くあります。それほど難しいことを述べていなくても、群論に慣れていないと難解なことと認識してしまい、先に進めないことがあります。この講義では、対称性とは何か、群論とは何か、というところから始めて、どういう場合に群論が使われるかを学習します。この講義を通して、固体物性に関する文献をより詳細に読めるようになることを望みます。
演習を交えて進めますので、必ずしも授業計画に記載の内容が完了するとは限りません。しかし、教科書を最後まで読破し、各自の研究にも活かしていただきたく思います。 
Expressions related to group theory are often used without any notice in papers or books on solid state physics. Although they are not so difficult, you would recognize them to be abstruse if you were not familiar with group theory and you would not able to go ahead anymore. We will start from the basis, such as 'What is symmetry?' or 'What is group theory?'. Applications of group theory in solid state physics will be lectured. I hope you will able to read articles related to solid state physics in detail.
Exercises will be also done in order to understand deeply, so the program might not be finished. However, I hope you will finish reading of the textbook and apply group theory in your research.
学習・教育目標との対応
/Learning and Educational Policy
応用物理専門能力
Professional skills in applied physics
備考
/Notes
英語コースを履修登録している留学生がいる場合、授業は英語で行う。
The course will be conducted in English if there are foreign students who register English courses.
No. 回(日時)
/Time (date and time)
主題と位置付け(担当)
/Subjects and instructor's position
学習方法と内容
/Methods and contents
備考
/Notes
該当するデータはありません
Active learning 1-1
/主体的学修(反転授業,小テスト,振り返り 等)
Active learning 1-2
/上記項目に係るALの度合い
該当なし
Active learning 2-1
/対話的学修(グループ学習,協働,調査体験 等)
Active learning 2-2
/上記項目に係るALの度合い
該当なし
Active learning 3-1
/深い学修(複数科目の知識の総合化や問題解決型学修 等)
Active learning 3-2
/上記項目に係るALの度合い
該当なし