開講学期/Course Start | 2019年度/Academic Year 後期/Second |
---|---|
開講曜限/Class period | 木/Thu 1,木/Thu 2 |
授業区分/Regular or Intensive | 週間授業 |
対象学科/Department | システム理化学科 |
対象学年/Year | 1年,2年,3年,4年 |
授業科目区分/Category | 教育課程 システム理化学科 |
必修・選択/Mandatory or Elective | 必修 |
授業方法/Lecture or Seminar | 講義科目 |
授業科目名/Course Title | 微分積分B(Gクラス) |
単位数/Number of Credits | 2.0 |
担当教員名/Lecturer | 加藤正和 |
時間割コード/Registration Code | J2060 |
連絡先/Contact |
加藤正和(Q404 mkato@mmm.muroran-it.ac.jp) |
オフィスアワー/Office hours | 加藤正和(月曜日 10:25-11:55) |
実務経験/Work experience |
更新日/Date of renewal | 2019/10/10 |
---|---|
授業のねらい /Learning Objectives |
●理工学部のどの課程でも必要となる数学の基礎知識の1つである微分積分学に関する内容を講義する。 ●微分積分Bでは1変数関数の積分法および多変数関数の極限・連続性・偏微分法を理解することを目的とする。 |
到達度目標 /Outcomes Measured By: |
1. 1変数関数の2つの積分、定積分・不定積分の概念と性質を理解し、計算することが出来る。 2. 置換積分法や部分積分法を用いて、与えられた関数に対して、定積分、不定積分を求めることが出来る。 3. 広義積分の概念を理解し、与えられた広義積分の収束・発散を調べることが出来る。 4. 多変数関数の極限や連続性について理解することが出来る。 5. 偏微分・全微分の概念を理解し、計算と応用が出来る。 6. 多変数関数の極値を求めることが出来る。 |
授業計画 /Course Schedule |
総授業時間数(実時間):22.5時間 第1回:1変数関数の定積分の定義と性質 第2回:1変数関数の定積分の性質と存在性 第3回:1変数関数の不定積分の定義と微分積分学の基本定理 第4回:1変数関数の積分の計算1(置換積分法と部分積分法) 第5回:1変数関数の積分の計算2(有理関数の積分) 第6回:1変数関数の積分の計算3(有理関数の積分への帰着) 第7回:広義積分 第8回:1回から7回の講義内容の復習と中間試験 第9回:2変数関数の極限と連続性 第10回:偏導関数の定義と性質 第11回:全微分の定義と性質 第12回:連続・偏微分・全微分の関係 第13回:合成微分と高次導関数 第14回:Taylor展開とMaclaurin展開 第15回:極値問題 定期試験 教科書の内容を予め理解した上で講義に参加すること。 演習(webwork)を課す。 |
教科書 /Required Text |
微分積分(高坂 良史・ 加藤 正和・黒木場 正城・高橋 雅朋 共著、学術図書出版社)(ISBN:9784780606) |
教科書・参考書に関する備考 |
微分積分に関する本は数多く出版されているので図書館などで自分にあった本を探し、参考にしてください。 教科書は微分積分Cでも使うので、紛失しないようにしてください。 |
成績評価方法 /Grading Guidelines |
●中間試験と定期試験を行う。 ●単位を取得する為の必要条件は中間試験、期末試験を受験し、かつWebWorkの正解率が70%以上とする。 ●中間試験40%、定期試験60%の割合で100点満点として評価する。そのうえで60点以上を合格とする。 ●各到達度目標は中間試験、定期試験において定義、計算問題などを出題し達成度を評価する。 |
履修上の注意 /Notices |
●中間試験、定期試験を正当な理由で欠席した場合、理由書を1週間以内に提出すること。理由書の提出がある場合、追試験等の措置を講ずる。 ●再試験を1回行うが、再試験合格者の成績は試験の得点に関わらず60点とする。 ●再試験を受験する為の必要条件は、中間試験と定期試験を受験し、かつWebWorkの正解率が70%以上とする。 ●最終的に不合格になった者は、再履修すること。 |
教員メッセージ /Message from Lecturer |
講義での疑問点などは、そのままにせずに気軽に質問して下さい。 |
学習・教育目標との対応 /Learning and Educational Policy |
2019年度版学生便覧「学習目標と授業科目との関係表」参照 |
関連科目 /Related course |
1年次前期の微分積分Aを学んでいることを前提として講義を行う。 2年次前期の微分積分Cにおいても微分積分A・Bを用いて重積分・微分方程式を学ぶ。 |
備考 /Notes |
オフィスアワー以外にも在室時には質問などに対応します。 |
No. | 回(日時) /Time (date and time) |
主題と位置付け(担当) /Subjects and instructor's position |
学習方法と内容 /Methods and contents |
備考 /Notes |
---|---|---|---|---|
該当するデータはありません |
Active learning 1-1 /主体的学修(反転授業,小テスト,振り返り 等) |
・1変数関数の積分に関しては十分な自己学習を行うこと。 ・前回習った内容について、教科書の練習問題を解き十分な自己学習を行うこと。 |
---|---|
Active learning 1-2 /上記項目に係るALの度合い |
50%超 |
Active learning 2-1 /対話的学修(グループ学習,協働,調査体験 等) |
講義中の質問を推奨する。 |
Active learning 2-2 /上記項目に係るALの度合い |
15%~50% |
Active learning 3-1 /深い学修(複数科目の知識の総合化や問題解決型学修 等) |
微分積分Aで学んだ知識や次年度の微分積分Cで学ぶ事項と関連させながら講義を行う。 |
Active learning 3-2 /上記項目に係るALの度合い |
15%~50% |