開講学期/Course Start | 2019年度/Academic Year 前期/First |
---|---|
開講曜限/Class period | 火/Tue 5,火/Tue 6 |
授業区分/Regular or Intensive | 週間授業 |
対象学科/Department | 創造工学科 |
対象学年/Year | 1年,2年,3年,4年 |
授業科目区分/Category | 教育課程 創造工学科 |
必修・選択/Mandatory or Elective | 必修 |
授業方法/Lecture or Seminar | 講義科目 |
授業科目名/Course Title | 微分積分A(Dクラス) |
単位数/Number of Credits | 2.0 |
担当教員名/Lecturer | 内免 大輔 |
時間割コード/Registration Code | J2012 |
連絡先/Contact | 内免 大輔(naimen@mmm.muroran-it.ac.jp) |
オフィスアワー/Office hours | 内免 大輔(木曜日14:35~16:05) |
実務経験/Work experience |
更新日/Date of renewal | 2019/10/09 |
---|---|
授業のねらい /Learning Objectives |
●理工学部のどの課程でも必要となる数学の基礎知識の1つである微分積分学に関する内容を講義する。 ●微分積分Aでは初等関数の基本性質について理解し、1変数関数の極限・連続性・微分法を理解することを目的とする。 |
到達度目標 /Outcomes Measured By: |
1. べき関数、多項式、三角関数、逆三角関数、指数関数、対数関数などの基本的な関数の性質が理解できる。また、それらの関数に関連した極限を求めることが出来る。 2. 1変数関数の連続性と微分の概念を理解し、関数に対して連続性と導関数の導出を行うことが出来る。 3. 1変数関数のTaylorの定理を理解し、関数に対してTaylor展開を行うことが出来る。また、Taylor展開を応用して、関数値の近似値を求めることが出来る。 4. 1変数関数の極値を求めることが出来る。 |
授業計画 /Course Schedule |
総授業時間数(実時間);22.5時間 第1回:実数の性質と諸概念 第2回:関数の定義と性質 第3回:関数の極限 第4回:連続関数の定義と性質 第5回:逆関数 第6回:初等関数1(指数関数、対数関数) 第7回:初等関数2(三角関数、逆三角関数) 第8回:1回から7回の講義内容の復習と中間試験 第9回:微分の定義を性質 第10回:初等関数の微分1(合成関数の微分) 第11回:初等関数の微分2(逆関数の微分) 第12回:高次導関数 第13回:平均値の定理とロピタルの定理 第14回:テイラー展開とマクローリン展開 第15回:1変数関数の極値 定期試験 講義毎に演習を課す。 |
教科書 /Required Text |
微分積分(増補版) 高坂 良史・ 加藤 正和・黒木場 正城・高橋 雅朋 共著、学術図書出版社(ISBN:9784780606447) |
参考書等 /Required Materials |
授業中に適宜、参考書などを紹介する。 |
教科書・参考書に関する備考 | 関連図書は数多く出版されているので図書館などで自分にあった本を探し、参考にしてください。必要があれば適宜紹介します。 |
成績評価方法 /Grading Guidelines |
●中間試験と定期試験を行う。 ●中間試験40%、定期試験60%の割合で100点満点として評価する。そのうえで60点以上を合格とする。 ●各到達度目標は中間試験、定期試験において定義、計算問題などを出題し達成度を評価する。 |
履修上の注意 /Notices |
●中間試験の掲示には注意するようにしてください。 ●出席が良好な成績が60点未満の不合格者に対して、再試験を1回行うが、再試験合格者の成績は試験の得点に関わらず60点とする。 ●最終的に不合格になった者は、再履修すること。 |
教員メッセージ /Message from Lecturer |
講義の予習・復習をするように心掛けて下さい。 特に教科書や演習書の例題や問いは自主的に解いておくのがよい。 その際、講義用とは別にノートをつくるとよいです。 講義の質問等あればQ401内免教員室に来て下さい。 |
学習・教育目標との対応 /Learning and Educational Policy |
2019年度版学生便覧「学習目標と授業科目との関係表」参照 |
関連科目 /Related course |
1年次後期の微分積分B、2年次前期の微分積分Cにおいて微分積分Aを用いて微分積分学、微分方程式を学ぶ。 |
備考 /Notes |
疑問や質問などあれば教員室Q401に来て下さい。 オフィスアワー以外にも在室時には可能な限り対応します。 |
No. | 回(日時) /Time (date and time) |
主題と位置付け(担当) /Subjects and instructor's position |
学習方法と内容 /Methods and contents |
備考 /Notes |
---|---|---|---|---|
該当するデータはありません |
Active learning 1-1 /主体的学修(反転授業,小テスト,振り返り 等) |
講義毎に演習を課す。 |
---|---|
Active learning 1-2 /上記項目に係るALの度合い |
50%超 |
Active learning 2-1 /対話的学修(グループ学習,協働,調査体験 等) |
講義中の質問および演習中の学生間や学生教員間での議論を推奨する。 |
Active learning 2-2 /上記項目に係るALの度合い |
15%~50% |
Active learning 3-1 /深い学修(複数科目の知識の総合化や問題解決型学修 等) |
微分積分Bや微分積分Cで学ぶ事項と関連させながら講義を行う。 |
Active learning 3-2 /上記項目に係るALの度合い |
15%~50% |