開講学期/Course Start | 2017年度/Academic Year 後期/Second |
---|---|
開講曜限/Class period | 火/Tue 5,火/Tue 6,火/Tue 7 |
授業区分/Regular or Intensive | 週間授業 |
対象学科/Department | 応用理化学系学科(1番-70番) |
対象学年/Year | 1年,2年,3年,4年 |
授業科目区分/Category | 教育課程 主専門教育科目 |
必修・選択/Mandatory or Elective | 必修 |
授業方法/Lecture or Seminar | 講義 |
授業科目名/Course Title | 解析B(応理・1番-70番)/Calculus B |
単位数/Number of Credits | 3.0 |
担当教員名/Lecturer | 高橋雅朋(学部),布田 徹(学部) |
時間割コード/Registration Code | C3504 |
連絡先/Contact |
高橋雅朋(Q403(高橋研究室) masatomo@mmm.muroran-it.ac.jp ) 布田 徹(Q301(火曜日のみ在室) 011-563-5456 t-fuda@math.sci.hokudai.ac.jp ) |
オフィスアワー/Office hours |
高橋雅朋(火曜7・8限14:35~16:05)
布田 徹(講義のある火曜日の5~10時限の講義の前後) |
更新日/Date of renewal | 2017/09/22 |
---|---|
授業のねらい /Learning Objectives |
微分積分学のうち1変数の積分法および、多変数関数にかかわる内容を講義する。1変数の積分法を理解する.。また、多変数関数の極限・連続性・偏微分法・全微分可能性を理解する。 |
到達度目標 /Outcomes Measured By: |
1.1変数関数の積分の概念を理解する。 2. 置換積分や部分積分法を用いて、与えられた関数に対して定積分、不定積分を求めることができる。 3. 広義積分の概念を理解し、与えられた広義積分の収束・発散を理解することができる。 4. 多変数関数の極限や連続性の概念を理解することができる。 5. 偏微分・全微分の概念を理解し、与えられた関数に対してそれらを求めることができる。 6. 多変数関数の極値を求めることができる。 7. 数学的な議論に慣れ親しむ。 |
授業計画 /Course Schedule |
総授業時間数 36時間 1週目 シラバスの説明、積分の定義 2週目 積分の性質 3週目 不定積分 4週目 積分の計算 5週目 有理関数の積分 6週目 広義積分の定義 7週目 広義積分の計算 8週目 中間試験 9週目 2変数関数の極限の定義と性質 10週目 2変数関数の連続性 11週目 偏微分の定義と性質 12週目 全微分の定義と性質 13週目 高階偏導関数とTaylorの定理 14週目 2変数関数の極大・極小(1) 15週目 2変数関数の極大・極小(2) (16週目 定期試験) 135分の授業で、講義と演習に分かれています。 毎回演習を行いますので、予習・復習を心がけてください。特に復習には十分に力を入れてください。 |
教科書 /Required Text |
高坂,高橋,加藤,黒木『微分積分』学術図書出版社(ISBN:9784780603996) |
成績評価方法 /Grading Guidelines |
演習・中間試験・定期試験により評価する。 演習(講義時間内に行う計算問題中心の小テスト)20%、 中間試験(筆記形式・計算問題および論証問題)40%、 定期試験(筆記形式・計算問題および論証問題)40% の割合で換算して100点満点とし、その上で60点以上を合格とします。 ただし、出席回数が10回未満のものは不合格とします。 各到達度目標は、演習、中間試験、定期試験において計算問題および論証問題を出題し、達成度を評価する。 |
履修上の注意 /Notices |
●中間試験や補講の掲示には注意すること。 ●中間試験、定期試験を正当な理由で欠席した場合、理由書を1週間以内に提出すること。理由書の提出がある場合、追試験等を行います。 ●合格点に達していない者で、かつ出席が良好な者(15回中10回以上)に対しては、再試験を1回行うことがあります。再試験は4月以降に行う予定なので、卒業などで単位が必要な者は、中間試験と定期試験で合格点に達するようにすること。 ●最終的に不合格になった者は、再履修すること。 |
教員メッセージ /Message from Lecturer |
講義内容に関して質問などがある場合は、オフィスアワーに質問に来るか、 このシラバスに書いてある連絡先のアドレスへメールして下さい。 メールを送信する際は、件名を『解析Bに関する質問』とし、本文に送信者の所属と学籍番号・氏名を明記すること。件名が無いメールや氏名が書かれてないメールに関しては、返信できない場合があります。 予習・復習を心がけてください。特に復習には十分に力を入れて下さい。 大学の講義は高校までと違い、出席しているだけで理解できるわけではありません。 勉強に必要なことは講義で話しますが、本当に理解するには受講者の自主学習が求められますし、こちらもそのつもりで講義をします。 講義のノートを元に自分で勉強して、演習問題などを解いてください。 次回の講義までに、講義中に書き写した板書を復習用のノートにまとめながら、 自分の理解度や疑問点を確認すると良いと思います。 |
学習・教育目標との対応 /Learning and Educational Policy |
この授業の単位修得は応用理化学系学科、 ・応用化学コース・バイオシステムコースの「A.語学、数学、自然科学、及び情報技術等の基礎知識を身につける。【基礎】」 ・応用物理コースの学習目標(D)理工学基礎「技術者としての素養および応用物理を理解するための基礎として,数学,自然科学,情報科学を修得する」に対応している。 JABEE基準1(2)の(c)数学及び自然科学に関する知識とそれらを応用する能力、(d)当該分野において必要とされる専門的知識とそれらを応用する能力、(g)自主的、継続的に学習する能力に対応する。 |
関連科目 /Related course |
2年次前期の解析Cにおいて解析Aおよび解析Bを用いて微分積分学、微分方程式を学ぶ。 |
No. | 回(日時) /Time (date and time) |
主題と位置付け(担当) /Subjects and instructor's position |
学習方法と内容 /Methods and contents |
備考 /Notes |
---|---|---|---|---|
該当するデータはありません |
Active learning 1-1 /主体的学修(予復習,反転授業,小テスト,振り返り 等) |
前回行った講義内容に対して毎回演習を実施するので、十分復習を行うこと。 |
---|---|
Active learning 1-2 /上記項目に係るALの度合い |
15%~50% |
Active learning 2-1 /対話的学修(グループ学習,協働,調査体験 等) |
演習は持ち込み可であり、教員に対する質問を奨励する。 |
Active learning 2-2 /上記項目に係るALの度合い |
15%未満 |
Active learning 3-1 /深い学修(複数科目の知識の総合化や問題解決型学修 等) |
1年前期に学んだことを基礎とし、総合的な学習を行う。 |
Active learning 3-2 /上記項目に係るALの度合い |
15%未満 |