授業情報/Course information

開講学期/Course Start 2016年度/Academic Year  前期/First
開講曜限/Class period 月/Mon 夜3,夜4
授業区分/Regular or Intensive 週間授業
対象学科/Department 情報電子工学系学科 夜間主コース
対象学年/Year 2年,3年,4年
授業科目区分/Category 教育課程 主専門教育科目
必修・選択/Mandatory or Elective 必修
授業方法/Lecture or Seminar 講義
授業科目名/Course Title 解析C/CalculusC
単位数/Number of Credits 2.0
担当教員名/Lecturer 黒木場正城(学部)
時間割コード/Registration Code B7201B
連絡先/Contact 黒木場正城( kurokiba@mmm.muroran-it.ac.jp(緊急時のみ) / Q411室(通常))
オフィスアワー/Office hours 黒木場正城( 木曜日15:30-17:00)
更新日/Date of renewal 2016/04/08
授業のねらい
/Learning Objectives
 科学を理解する上で、変化する量を関数として取り扱う数学的考え方は基本である.
工学現象を記述する際,多くが微分方程式で表現される.解析Cでは,解析A,解析Bで
学んだ1変数関数の微分積分法,多変数関数の微分法に続いて,多変数関数の積分法を
学習し、さらにそれまでに学んだ数学の技術を適用して,常微分方程式の解の求め方に
ついて学習する.
到達度目標
/Outcomes Measured By:
1)重積分法の基本的な概念を理解し,重積分の値を求めることができる.
2)変数変換を用いて重積分の値を求めることができる.
3)広義重積分の値を求めることができる.
4)変数分離形常微分方程式と同次形常微分方程式を解くことができる.
5)1階線形常微分方程式を解くことができる.
5)2階の線形常微分方程式を解くことができる.
授業計画
/Course Schedule
総授業時間数:1.5時間(90分)×16週(定期試験の週を含む)=24時間
第1週目 シラバスの説明,1変数関数積分の復習
第2週目 2変数関数の重積分の定義とその性質
第3週目 長方形領域の累次積分
第4週目 有界な縦(横)線形領域上の累次積分
第5週目 座標変換(変数変換)とヤコビアン、重積分の計算
第6週目 重積分の定義の拡張(広義重積分)
第7週目 中間試験
第8週目 変数分離形常微分方程式
第9週目 同次形常微分方程式
第10週目 一階斉次線形常微分方程式の一般解 
第11週目 一階非斉次線形常微分方程式と定数変化法 
第12週目 定数係数斉次二階線形常微分方程式の一般解 
第13週目 定数係数斉次二階線形常微分方程式の一般解 その2 
第14週目 定数係数非斉次二階線形常微分方程式の一般解 
第15週目 定数係数非斉次二階線形常微分方程式と定数変化法
第16週目 定期試験
各週に行なわれる授業に対して,各自、自己学習(予習・復習)の時間を設ける.
教科書
/Required Text
「微分積分」高坂・高橋・加藤・黒木場 共著, 学術図書出版社(ISBN:4780604737)
参考書等
/Required Materials
「詳説演習微分積分学」塹江,,桑垣, 笠原 共著,培風館(ISBN:4563001619)
「常微分方程式論 」 大谷光春著,サイエンス社(ISBN:4781912737)
教科書・参考書に関する備考 [教科書]
「微分積分」高坂・高橋・加藤・黒木場 共著,学術図書出版社
[参考書]
・「 詳説演習微分積分学」 塹江誠夫,桑垣煥,笠原晧司共著,培風館
・「常微分方程式論」大谷光春著,サイエンス社
[備 考]
微積分の本は数多く出版されているので、図書館などで自分に合ったものを探し、参考にして下さい .
成績評価方法
/Grading Guidelines
100点満点で中間試験40点,定期試験40点,レポート20点の割合で評価する.
100点満点で60点以上を合格とする.
各到達度目標の評価方法は,次のように行なう.
目標1. 中間試験,レポート問題において論述問題を出題し,達成度を評価する.
目標2. 中間試験,レポート問題において論述問題を出題し,達成度を評価する.
目標3. 中間試験,レポート問題において計算問題を出題し,達成度を評価する.
目標4. 定期試験,レポート問題において計算問題を出題し,達成度を評価する.
目標5. 定期試験,レポート問題において計算問題を出題し,達成度を評価する.
目標6. 定期試験,レポート問題において計算問題を出題し,達成度を評価する.
履修上の注意
/Notices
・ 講義の際、演習課題を与えるので、レポートとして提出すること.
・レポート演習問題を完全に解答していない答案,および氏名,出題日が
 記載されていない答案は、提出しても未提出の扱いとする. 
・ 中間試験の掲示には注意すること.
・ 中間試験、定期試験は必ず受験すること.然るべき理由で受験できない場合は、
 教務事務に欠席届及び理由を証明できる書類を提出すること.
 病気の場合は医師の診断書の写し、交通事故の場合は
 事故証明書の写しを提出すること.本人が連絡できない場合は代理人の連絡でも
 良いが、1週間以内に必ず連絡をすること.正当な理由の場合のみ、追試験等の
 措置を講ずる.
・レポート提出率90%で成績が50点以上60点未満の不合格者に対し、本人の申し出 により再試験を行うことがある.申し出のない再試験受験は認めない.
・再試験合格者の成績は、試験の得点にかかわらず60点とする.
・再試験は必ず行なうものではない.本来の成績判定となる中間試験,定期試験で
 努力を尽くすこと.
・メール,電話による連絡は一般には行なわない.
・再試験受験希望者は試験日の連絡に注意する事.再試験日時の相談には応じない.
教員メッセージ
/Message from Lecturer
講義での疑問点などは、そのままにせずに気軽に質問して下さい。 
学習・教育目標との対応
/Learning and Educational Policy
この授業の単位修得は,情報工学系学科電気電子工学コース・情報通信システムコース「A(数学・物理)自然現象を理解するための基礎となる数学・物理学の知識を習得する.(A-1)数学、物理学の基礎的な事項について説明でき,定量的に計算することができる」,情報システム学コース・コンピュータ知能学コース「情報技術者[情報基礎]数学と自然科学の基礎知識を身につける」と対応している.   
関連科目
/Related course
解析A, 解析B, 線形代数
No. 回(日時)
/Time (date and time)
主題と位置付け(担当)
/Subjects and instructor's position
学習方法と内容
/Methods and contents
備考
/Notes
該当するデータはありません