開講学期
Course Start
2012年度 前期
授業区分
Regular or Intensive
週間授業
対象学科
Department
数理システム工学専攻
対象学年
Year
1
必修・選択
Mandatory or Elective
選択
授業方法
Lecture or Seminar
講義
授業科目名
Course Title
計算機代数システム特論
単位数
Number of Credits
2
担当教員
Lecturer
竹ケ原裕元
教員室番号
Office
Q408
連絡先(Tel)
Telephone
46-5807
連絡先(E-mail)
E-mail
yugen@mmm.muroran-it.ac.jp
オフィスアワー
Office Hour
火曜日 16:00−17:30
授業のねらい
Learning Objectives
「線形代数」では、連立1次方程式について解の具体的な計算方法を学んだ。つまり係数の掃き出しにより方程式系を解くわけである。本講義では、まず整数や1変数多項式を題材に数学的概念や代数計算について学び、ついで多変数多項式における理論および計算法について理解する。
In Linear Algebra, we learned the explicit calculation of system of linear equations. We can solve
a system of linear equation by using sweepingout methods . In this lecture, first, we study mathematical notions and algebraic calculations through integers and polynomials of one variable , and secondly, we realize the theory and calculation methods of polynomials of several variables.
到達度目標
Outcomes Measured By:
以下の項目に関する基礎的な理論を理解する。 1.整数 2.1変数多項式 3.多変数多項式 ― グレブナー基底の導入 4.グレブナー基底の計算
We realize the basic theory of the following items: 1. integers; 2. polynomials of one variable; 3. polynomials of several variables--an introduction to Grobner bases; 4 calculations of Grobner bases.
授業計画
Course Schedule
授業計画, the plan of lecture:
第1回:内容の概略, outline;
第2回:除法の定理, divisible algorism;
第3回:代数的構造(環、イデアル、剰余環), algebraic structure(ring, ieal, residue class ring);
第4回:定義と基本性質, definitions and elementary properties;
第5回:拡張ユークリッド互除法, extended Euclidian divisible algorism;
第6回:終結式, resultant;
第7回:順序と簡約, order and reduce;
第8回:グレブナー基底, Grobner bases;
第9回:ヒルベルトの基底定理, Hilbert basis theorem;
第10回:変数消去, eliminating variables;
第11回:連立方程式の解の個数, the number of solutions of a system of equations;
第12回:ディクソンの補題, Dickson's lemma;
第13回:S多項式, S polynomials;
第14回:ブッフバーガーのアルゴリズム, Buchberger's algorism;
第15回:計算例, examples of calculations.
教科書
Required Text
テキストは使用しない。
参考書
Required Materials
代数学入門第3課(一松信著、近代科学社) 
教科書・参考書に関する備考
成績評価方法
Grading Guidelines
レポートにより評価する。
履修上の注意
Please Note
線形代数を履修していることが望ましい。  

教員メッセージ
Message from Lecturer
わからないところは、質問してください。
学習・教育目標との対応
Learning and Educational
Policy
本専攻の学習・教育目標

(1) 数学に関する高度な専門知識、工学分野の基礎的素養、及び特定の分野に偏らない分野横断的な思考の修得
(2) 数学の幅広い素養と数学を基にした数式処理・数値実験等の専門的知識の修得
(3) 数理科学の2つのふへんせい(普遍性、不変性)の重要性を理解し、物事を統一的な視点から眺め、処理する能力の修得
(4) 数学的知識と数理的思考により専門知識を活用・応用し、学際的な諸問題の解決と新技術の創生に貢献できる能力の修得

に対応している。  
関連科目
Associated Courses
離散数学特論,計算機リテラシー特論
(線形代数,線形空間−学部)
備考
Remarks