授業のねらい |
工学部のどの課程でも必要となる数学の基礎知識のうち微分積分学にかかわる内容を講義する。実数列の性質と極限、1変数関数の極限・連続性・微分法を理解する。
|
|
授業の目標 |
数列の極限を理解し、求めることができる。1変数関数の極限や微分を理解し、求めることができる。1変数関数のTaylorの定理を理解することができる。1変数関数の極値を求めることができる。 |
|
授業計画 |
1.論理・集合に関する準備 2.実数の性質と諸概念 3.数列の極限の性質 4.関数の極限の性質 5.初等関数 6.微分の定義と諸定理 7.初等関数の微分 8.Taylor展開とMaclaurin展開
以上の項目をそれぞれ1,2回を目処に講義を行う。 時間に余裕のある場合は演習も行う。 |
|
教科書及び教材 |
理工系の微分・積分(学術図書出版社) 著者:溝口宣夫・五十嵐敬典・桂田英典 他4名 (定価1900円+税)
|
|
参考書 |
大学演習 微分積分学(裳華房) 三村征雄編 (定価4515、税込) 図書館に13冊蔵書あり
|
|
成績評価方法 |
中間試験 40%、定期試験 60%の割合で成績を100点満点で評価する。レポート提出は複数回予定している。合格は60点以上とする。 不合格の学生を対象に1回だけ再試験を実施する。再試験による合格者の成績は、試験の得点に関わらず、60点とする。 |
|
履修条件等 |
|
教員からのメッセージ |
授業の予習・復習をするように心掛けて下さい。課題は必ず提出してください。 |
|
その他 |
わからないところは、質問して下さい。オフィスアワーヅは、毎週火曜日、金曜日の午後4:20−5:20です。
|
|