ELECTRONICS DEVICES AND MATERIALS

Atsunori KAMEGAWA

kamegawa@material.tohoku.ac.jp

電子デバイス材料学 亀川 厚則

SYLLABUS

- Introduction to materials structure and dielectric physics (04/27)
- <u>Ferroelectricity involved in structural</u> <u>phase transitions</u> (05/25)
- Material design of dielectrics and introduction to metamaterials (06/01)
- Ferroelectric devices (06/08)

LAST TIME: PIEZOELECTRICITY,

PYROELECTRICITY AND FERROELECTRICITY

Piezoelectricity

Pyroelectricity

Ferroelectricity

<u>Piezoelectricity</u>: the ability of some materials to generate an electric potential in response to applied mechanical stress **20 point groups** lacking in a center of symmetry

Pyroelectricity: the ability of certain materials to generate an electrical potential when they are heated or cooled (having spontaneous polarization)

10 point groups including polar vectors

Ferroelectricity: Physical property of a material whereby it exhibits a spontaneous polarization, the direction of which can be switched between equivalent states by the application of an external electric field

FERROELECTRICITY INVOLVED IN STRUCTURAL PHASE TRANSITIONS

- 1. Ferroelectricity
- 2. Phase Transition
- 3. First-order and Second-order Phase Transitions
- Ehrenfest Classification
- o Landau's Theorem
- 4. Ferroelectricity Involved in Structural Phase **Transitions**
- 5. Classification of Ferroelectrics
- Displacive Type
- o Order-Disorder Type

FERROELECTRIC DOMAINS

Single domain crystal: energetically non-favorable \bigcirc Fabrication -heating above T_c -cooling in an external E-field

Multi-domain crystal: energetically favorable Controlled fabrication via E-field poling 2-8

THERMODYNAMICS OF PHASE TRANSITION ~EHRENFEST CLASSIFICATION ~

Ehrenfest's definition of phase transition: In an n-th order phase transition, the n-th and higher thermodynamic derivatives of Gibbs free energy *G* with respect to T and P show discontinuities.

Ehrenfest Classification

- o first order phase transtion (1次相転移)
- o second order phase transtion (2次相転移)
- on-th order phase transtion (n次相転移)

PHASE TRANSITION

Phase Transision: the transformation of a thermodynamic system from one phase to another with a change in a variable such as the temperature, pressure, external magnetic field.

Schematic Phase Diagram of water

2-11

Phase Transition of ferromagnetism

REVIEW OF THERMODYNAMICS

Gibbs free energy G=H-TS=U+pV-TS

Total differentiation \Rightarrow dG=dU+pdV+Vdp-TdS-SdT

(First law of thermodynamics: dU = TdS - pdV)

dG=Vdp-SdT

$$\left[\frac{\partial G}{\partial T}\right]_{p} = -S \qquad \left(\frac{\partial G}{\partial p}\right)_{T} = V$$

S, V = the first derivatives of Gibbs energy

2-12

definition of constant-pressure specific heat capacity:

$$Cp = \left(\frac{\partial H}{\partial T}\right)_{p}$$

$$Cp = T \left(\frac{\partial S}{\partial T} \right)_{p} = -T \left(\frac{\partial^{2} G}{\partial T^{2}} \right)_{p}$$

dH = TdS + Vdp

2-14

Cp = 2nd derivative of G with respect to T $\Rightarrow Cp$ also shows discontinues in 1st order phase transition

2-19

2-18

EHRENFEST CLASSIFICATION

SYMMETRY-BREAKING TRANSITION ~ INTRODUCTION TO LANDAU'S THEORY~

In general thermodynamics, **phase transition** indicates the transformation from one phase to another.

In a narrow sense, phase transition take place between phases with different symmetry and without long-range atomic diffusion.

The terminology "phase transtiion " is used as

this narrow sense in ferroelectric physics.

Symmetry-breaking process: the transition from the more symmetrical phase to the less symmetrical one

MODERN CLASSIFICATION OF PHASE TRANSITIONS

Weakness of Ehrenfest scheme

Ehrenfest scheme does not take into account the case where a derivative of free energy diverges (which is only possible in the thermodynamic limit).

ex) the specific heat in ferromagnetic transition diverges to infinity.

Modern classification of Phase Transitions

The second-order phase transition (continuous phase transition)

♦ No latent heat

2-20

LANDAU PHENOMENOLOGICAL THEORY OF PHASE TRANSITIONS

- ♦ Thermodynamic potential density of free energy
- ◆ Quantity exists which could be used as a measure of order which appears in the ordered phase →order parameter
- ♦ Landau-Devonshire theory → order parameter spatially constant (spatial fluctuations are neglected, ferroelectrics $P \neq F(m)$)

Free energy of Landau Theory

$$F(m)=F_0+\frac{1}{2}am^2+\frac{1}{4}bm^4+\frac{1}{6}cm^6+\cdots-HM$$

2-24

ORDER PARAMETER

Partial list of transitions and order parameters

Transition

Order parameter

Liquid-gas

density magnetization

Ferromagnetic **Ferroelectric**

polarization

Superconductors

complex gap parameter

Siperfluid

condensate wave function

Phase Separation

concentration

L. P. Kadanoff et al., Rev. Mod. Phys., 39 (1967), 395.

FREE ENERGY OF FERROELECTRICITY IN LANDAU TREATMENT

Order parameter of ferroelectricity: polarization, P

$$F(m)=F_0+\frac{1}{2}aP^2+\frac{1}{4}bP^4+\frac{1}{6}cP^6+\cdots-EP$$

Simplifications: we neglect dependence of parameters on p and for simplicity only $a = f(T) = a_0(T-T_0)$

2-23

SECOND ORDER TRANSITION OF LANDAU THEORY

$$F(m)=F_0+\frac{1}{2}aP^2+\frac{1}{4}bP^4+\frac{1}{6}cP^6+\cdots-EP$$

 $b \ge 0 \rightarrow second order transition$

minimization of F → equilibrium order parameter P

For your understanding of the Landau's 2nd order transition

ORDER PARAMETER AND THE SECOND-ORDER PHASE TRANSITION

β-brass(CuZn)

Cu

Zn

(B2) (A2)

random occupation

 $\omega(Cu) = \omega(Zn) = 0.5$ Order parameter: m

Occupation fraction

 $m = \langle \frac{\omega(Cu) - \omega(Zn)}{\omega(Cu) + \omega(Zn)} \rangle$

Cu on body-center: $\omega(Cu)$

Zn on body-center: $\omega(Zn)$ When the occupation is random,

m=1 for a fully ordered state order parameter m=0 for a completely random state

Temperature

PHASE TRANSITION OF

FIRST ORDER TRANSITION OF LANDAU THEORY $b < 0 \rightarrow$ first order transition We need term $+\frac{1}{6}cP^6$ in order to keep F positive.

If E=0: $\frac{\partial F}{\partial P}$ =0 → $aP - |b| P^3 + cP^5 = 0$ → trivial solution P=0

nontrivial solution $\leftarrow \rightarrow$ a - | b | P² +cP⁴ = 0

rhombohedral (C_{3v}) orthorhombic (D_{2v})

2-25

2-27

If $E\neq 0$: at some critical E_C discontinuous transition becomes continuous critical point defined by (T_C, E_C)

tetragonal(C₄,

cubic(O_h)

CLASSIFICATION OF FERROELECTRICS ~ACCORDING TO THE NATURE OF THE FERROELECTRIC PHASE TRANSITION ~

- Displacive Type
- Order-Disorder Type

2-28

