ELECTRONICS DEVICES AND MATERIALS

Atsunori KAMEGAWA

kamegawa@material.tohoku.ac.jp

電子デバイス材料学 亀川 厚則

TODAY'S TOPICS

1. What is Dielectric?

- 2. Dielectricity of Materials and Dielectric Dispersion
- Electric Polarizations in Solid State Materials and Dielectric Constant
- Electric Dipoles and Polarizability
- Dielectric Dispersion (Relaxation & Resonance type)

3. Crystal Structures and Their Symmetry

- o Crystal System and The Bravais lattices
- Symmetry Operations and Point Goups
- Crystal symmetry and Polar Crystals

SYLLABUS

- Introduction to materials structure and dielectric physics
- Ferroelectricity involved in structural phase transitions
- Material design of dielectrics and introduction to metamaterials
- Ferroelectric devices

TODAY'S TOPICS

<u>1.What is Dielectric?</u>

- 2. Dielectricity of Materials and Dielectric Dispersion
- Electric Polarizations in Solid State Materials and Dielectric Constant
- Electric Dipoles and Polarizability
- Dielectric Dispersion (Relaxation & Resonance type)

3. Crystal Structures and Their Symmetry

- Crystal System and The Bravais lattices
- Symmetry Operations and Point Goups
- Crystal symmetry and Polar Crystals

WHAT IS DIELECTRIC?

A 'dielectric' is a good electric insulator so as to minimize any DC leakage current through a dielectric material.

POLARIZATION OF DIELECTRIC

TODAY'S TOPICS

1. What is Dielectric?

- 2. Dielectricity of Materials and Dielectric Dispersion
- <u>Electric Polarizations in Solid State Materials and</u> <u>Dielectric Constant</u>
- Electric Dipoles and Polarizability
- Dielectric Dispersion (Relaxation & Resonance type)

3. Crystal Structures and Their Symmetry

- Crystal System and The Bravais lattices
- Symmetry Operations and Point Goups
- Crystal symmetry and Polar Crystals

COMPLEX PERMITTIVITY (COMPLEX ELECTRIC CONSTANT)

 $\varepsilon = \frac{D_0}{\varepsilon_0 E_0} \cos \delta$

 $\varepsilon = \frac{D_0}{\varepsilon \circ E_0} \sin \delta$

 $\tan \delta = \frac{\varepsilon}{2}$

W= $\frac{1}{2}\omega \varepsilon "\varepsilon_0 E_0^2$

W is a energy stored in dielectric.

 $=\frac{1}{2}\omega \varepsilon' \varepsilon_0 E_0 tan \delta^2$

Erectric Field E ⇒alternating current(AC) Field

 $E=E_0e^{j\omega t}$

electric displacement field, ${\bf D}$

 $\begin{array}{l} \mathbf{D} = \mathbf{D}_{0} \mathbf{e}^{j \, \textit{wt-} \, \delta} \\ \boldsymbol{\delta} : \text{ measurable phase difference emerging between } \mathbf{D} \text{ and } \mathbf{E} \end{array}$

 $D = \varepsilon_{0} \varepsilon * E$ Complex permittivity: $\varepsilon *$

 $\varepsilon *= \varepsilon ' - \varepsilon "$

 ε " and $\tan\delta$ are related to the dissipation (or loss) of energy within the medium.

TODAY'S TOPICS

1.What is Dielectric?

- 2. Dielectricity of Materials and Dielectric Dispersion
- Electric Polarizations in Solid State Materials and Dielectric Constant
- Electric Dipoles and Polarizability
- Dielectric Dispersion (Relaxation & Resonance type)

3. Crystal Structures and Their Symmetry

- Crystal System and The Bravais lattices
- Symmetry Operations and Point Goups
- Crystal symmetry and Polar Crystals

ORIGINS OF POLARIZATION ~ ELECTRONIC POLARIZATION ~

Li ⁺¹	Be ⁺²	B+3	C+4	O-2	F-1	Ne
0.029	0.008	0.003	0.0013	3.88	1.04	0.390
Na ⁺¹	Mg ⁺²	Al ⁺³	Si ⁺⁴	S-2	Cl ⁻¹	Ar
0.179	0.094	0.052	0.0165	10.2	3.66	1.62
K+1	Ca+2	Sc ⁺³	Ti+4	Se-2	Br ⁻¹	Kr
0.83	0.47	0.286	0.189	10.5	4.77	2.46
Rb+1	Sr ⁺²	Y+3	Zr+4	Te-2	I-1	Xe
	0.00	0 55	0 97	14 0	7 10	2 00

 $\alpha = 4\pi \epsilon_0 a^3$

Electron electric dipole moment : μ e

 $\mu_{\rm e} = \alpha_{\rm e} E$

Electron polarizability : α e

ORIGINS OF POLARIZATION ~ IONIC POLARIZATION (ATOMIC POL.) ~

$\begin{array}{l} ORIGINS \ OF \ POLARIZATION \\ \sim DIPOLAR \ POLARIZATION \ (\text{DIPOLE RELAXATION}) \sim \end{array}$

Many molecules have permanent dipole moments μ due to non-uniform distributions of positive and negative charges on the various atoms.

by electric field.

Behavior of Dipole moment in electric field is given by Classical Statics (Boltzmann distribution).

⇒Polarization decrease with increasing temperature due to atomic vibrations.

RELAXATION TYPE DISPERSION

Relaxation spectra of relative dielectric constant, conductivity, and loss factor for a simple relaxation process with a single relaxation.

RESONANCE TYPE DISPERSION

RESONANCE TYPE DISPERSION

Resonance effects:

the rotations or vibrations of atoms, ions, or electrons.

TODAY'S TOPICS

- 1. What is Dielectric?
- 2. Dielectricity of Materials and Dielectric Dispersion
- Electric Polarizations in Solid State Materials and Dielectric Constant
- Electric Dipoles and Polarizability
- Dielectric Dispersion (Relaxation & Resonance type)

3. Crystal Structures and Their Symmetry

- Crystal System and The Bravais lattices
- Symmetry Operations and Point Goups
- Crystal symmetry and Polar Crystals

TODAY'S TOPICS

1.What is Dielectric?

- 2. Dielectricity of Materials and Dielectric Dispersion
- Electric Polarizations in Solid State Materials and Dielectric Constant
- Electric Dipoles and Polarizability
- Dielectric Dispersion (Relaxation & Resonance type)

3. Crystal Structures and Their Symmetry

- o Crystal System and The Bravais lattices
- Symmetry Operations and Point Goups
- Crystal symmetry and Polar Crystals

THE 7 CRYSTAL SYSTEMS

$\alpha = \beta = \gamma = 90^{\circ}$	a=b=c
$\alpha = \beta = \gamma = 90^{\circ}$	a=b≠c
$\alpha = \beta = 90^\circ; \gamma = 120^\circ$	a=b; c
$\alpha = \beta = \gamma \neq 90^{\circ}$	a=b=c
$\alpha = \beta = \gamma = 90^{\circ}$	a <b<c< td=""></b<c<>
$\alpha = \gamma = 90^\circ, \ \beta \neq 90^\circ$	c≤a,b
$\alpha \neq 90^{\circ}, \ \beta \neq 90^{\circ}, \ \gamma \neq 90^{\circ}$	c≤a≤b
	$\alpha = \beta = \gamma = 90^{\circ}$ $\alpha = \beta = \gamma = 90^{\circ}$ $\alpha = \beta = 90^{\circ}; \gamma = 120^{\circ}$ $\alpha = \beta = \gamma \neq 90^{\circ}$ $\alpha = \beta = \gamma = 90^{\circ}$ $\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$ $\alpha \neq 90^{\circ}, \beta \neq 90^{\circ}, \gamma \neq 90^{\circ}$

THE 14 BRAVAIS LATTICE

TODAY'S TOPICS

1.What is Dielectric?

- 2. Dielectricity of Materials and Dielectric Dispersion
- Electric Polarizations in Solid State Materials and Dielectric Constant
- Electric Dipoles and Polarizability
- Dielectric Dispersion (Relaxation & Resonance type)

3. Crystal Structures and Their Symmetry

- Crystal System and The Bravais lattices
- Symmetry Operations and Point Goups
- Crystal symmetry and Polar Crystals

ROTATION SYMMETRY

SYMMETRY OPERATIONS

Rotation 回転(5種類)
Reflection 鏡映(反射)
Inversion 反転
Rotatory inversion 回反
Rotatory reflection 回映

REFLECTION AND INVERSION SYMMETRY

Reflection: $m (or \sigma)$

Inversion: i (or I)

Inverse center i

ROTATORY REFLECTION **SYMMETRY** Rotation $S_1 = m$ $S_{2}^{1} = i$ $S_{3}^{2} = C_{3} + m$ $S_{6}^{2} = C_{3} + i$ Reflection S₂ **HERMANN-MAUGUIN NOTATION** ~ INTERNATIONAL SYMBOL ~ Schoenflies Symbols International Symbols • Rotation axis C₁, C₂, C₃, C₄, C₆ 1, 2, 3, 4, 6 3, 4, 6 • Rotation Inversion axis $\overline{\mathbf{C}}_3, \overline{\mathbf{C}}_4, \overline{\mathbf{C}}_6$ \circ Rotation Reflection axis $\mathbf{S_3, S_4, S_6}$ 3/m, 4/m, 6/m • Reflection plane m m 1 i • Inversion center

POINT GROUPS

	Schönflies Notation	Hermann -Maugum
	O_h	m3m
	0	432
Cubic	$\mathrm{T_d}$	$\overline{4}3$ m
	$\mathrm{T_{h}}$	m3
	T	23

O (octahedron) :

The group has the symmetry of an octahedron (or cube), with (O_h) or without (O) improper operations (those that change handedness).

T (tetrahedron)

The group has the symmetry of a tetrahedron. T_d includes improper operations, T excludes improper operations, and T_h is T with the addition of an inversion.

POINT GROUPSSubscripts (h, v, d, i)h: Horizontal reflection plane - passing through the origin and				
	Schönflies Notation	Hermann -Maugum	perpendicular to the axis with the 'highest' symmetry.	
Hexagonal	$egin{array}{ccc} { m D}_{6{ m h}} & & \ { m D}_{6} & & \ { m D}_{3{ m h}} & & \ { m C}_{6{ m v}} & & \ { m C}_{6{ m h}} & & \ { m C}_{6{ m h}} & & \ { m C}_{3{ m h}} & & \ { m C}_{6} & & \ {$	6/mmm 622 6m2 6mm <u>6/m</u> 6	 v: Vertical reflection plane - passing through the origin and the axis with the 'highest' symmetry. d: Diagonal or dihedral reflection in a plane through the origin and the axis with the 'highest' symmetry, but also bisecting the angle between the twofold axes perpendicular to the symmetry axis. 	
			i: inverse	

 D_n (dihedral): The group has an n-fold rotation axis plus a twofold axis perpendicular to that axis. D_{nh} has, in addition, a mirror plane perpendicular to the n-fold axis. D_{nv} has, in addition to the elements of D_n , mirror planes parallel to the n-fold axis.

C_n (cyclic):

The group has an n-fold rotation axis. C_{nh} is C_n with the addition of a mirror (reflection) plane perpendicular to the axis of rotation. Cnv is C_n with the addition of a mirror plane parallel to the axis of rotation.

POINT GROUPS

	Schönflies Notation	Hermann -Maugum
Rhombohedral	$\begin{array}{c} \mathbf{D}_{3\mathrm{d}} \\ \mathbf{D}_{3} \\ \mathbf{C}_{3\mathrm{v}} \\ \mathbf{C}_{3\mathrm{i}} \\ \mathbf{C}_{3} \end{array}$	$ \overline{3m} $ 32 3m $ \overline{3m} $ 3
Orthorhombic	$\begin{array}{c} \mathrm{D}_{2\mathrm{h}} \\ \mathrm{D}_{2} \\ \mathrm{D}_{2\mathrm{v}} \end{array}$	mmm 222 mm2

POINT GROUPS

	Schönflies Notation	Hermann -Maugum
Monoclinic	$egin{array}{c} \mathrm{C}_{2\mathrm{h}} \ \mathrm{C}_{\mathrm{S}} \ \mathrm{C}_{2} \end{array}$	2/m m 2
Triclinic	$egin{array}{cc} C_i \ C_1 \end{array}$	1 T

There are the 32 point group types.

Compound symmetry: screw axis and glide plane symmetry operations

The 230 unique space groups describing all possible crystal symmetries

TODAY'S TOPICS

1. What is Dielectric?

- 2. Dielectricity of Materials and Dielectric Dispersion
- Electric Polarizations in Solid State Materials and Dielectric Constant
- Electric Dipoles and Polarizability
- Dielectric Dispersion (Relaxation & Resonance type)

3. Crystal Structures and Their Symmetry

- Crystal System and The Bravais lattices
- Symmetry Operations and Point Goups
- o Crystal symmetry and Polar Crystals

POINT GROUPS OF CUBIC SYSTEM

	Schönflies Notation	Hermann -Maugum
Cubic	$egin{array}{c} { m O}_{ m h} \\ { m O} \\ { m T}_{ m d} \\ { m T}_{ m h} \\ { m T} \end{array}$	m3m 432 43m m3 23

PIEZOELECTRICITY AND CENTER OF SYMMETRY

Piezoelectricity : the ability of some materials to generate an electric potential in response to applied mechanical stress

Notice : **Piezoelecticity** is a linear effect, unlike **electrostriction**, which is a quadratic effect. In addition, **electrostriction** cannot be reversed, unlike **piezoelectricity**: deformation will not induce an electric field.

The formation of a separation of electric charge across the crystal lattice

20 piezoelectric point-groups lack a center of symmetry.

(the 21st is the cubic class 432)

PYOELECTRICITY AND SPONTANEOUS POLARIZATION

Pyroelectricity:

Spontaneous polarization is temperature dependent

Pyroelectric Crystal shows **spontaneous polarization**, having a dipole in their unit cell.

What is a origin of spontaneous polarization in crystal structure?

POLAR VECTOR AND SYMMETRY OPERATION ~ PYROELECTRICITY AND SPONTANEOUS POLARIZATION ~

2-fold symmetry C2 : (x, y, z) \Rightarrow (-x, -y, z)

$$\begin{bmatrix} P'_1 \\ P'_2 \\ P'_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} = \begin{bmatrix} -P_1 \\ -P_2 \\ P_3 \end{bmatrix}$$

von Neumann's theorem : $P'_i = P_i$

 $\boldsymbol{P}_1 = \boldsymbol{P}_2 = \boldsymbol{0}, \, \boldsymbol{P}_3 \neq \boldsymbol{0}$

Component of polar vector; (0, 0, z) ⇒ Occurrence of Spontaneous polarization

POLAR VECTOR

In Descartes mathematics, An example of an improper rotation is a mirror reflection. That is, these vectors are defined in such a way that, if all of space were flipped around through a mirror (or otherwise subjected to an improper rotation), that vector would flip around in exactly the same way.

As a particular case where the symmetry group is important, all of the below physical examples are vectors which "transform like the coordinates" under both proper and improper rotations. Vectors with this property are sometimes called **true vectors**.

Physical examples:

displacement, velocity, electric field, momentum, force, acceleration.

Axial vector (pseudovectors) :a quantity that transforms like a vector under a proper rotation, but gains an additional sign flip under an improper rotation (a transformation that can be expressed as an inversion followed by a proper rotation).

Physical examples:

the magnetic field, torque, vorticity, the angular momentum.

POLAR VECTOR AND SYMMETRY OPERATION ~ PYROELECTRICITY AND SPONTANEOUS POLARIZATION ~

Inverse symmetry \mathbf{i} : (x, y, z) \Rightarrow (-x, -y, -z)

$$\begin{bmatrix} P'_1 \\ P'_2 \\ P'_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} = \begin{bmatrix} -P_1 \\ -P_2 \\ -P_3 \end{bmatrix}$$

von Neumann's theorem : $P'_i = P_i$

$$P_1 = P_2 = P_3 = 0$$

Crystals including inverse symmetry do not have spontaneous polarization.

POLAR VECTOR AND SYMMETRY OPERATION ~ 10 POINT GROUPS IS POLAR ~

Point Group	Component of polar vector
2, 2m, 3, 3m, 4 4m, 6, 6m	0, 0, <i>p</i> ₃
m	$p_1, p_2, 0$
1	p_1, p_2, p_3
	Component of spontaneous polarization Component of pyroelectric coefficient

PIEZOELECTRICITY, PYROELECTRICITY AND FERROELECTRICITY

POINT GROUPS

	Schönflies Notation	Hermann -Maugum	Inversion Center	Polar Vector
	O_h	m3m	\checkmark	0
	0	432	-	0
Cubic	T_{d}	$\overline{4}3m$	-	0
	T_{h}^{-}	m3	\checkmark	0
	T	23	-	0

POINT GROUPS

	Schönflies Notation	Hermann -Maugum	Inversion Center	Polar Vector
	D_{4h}	4/mmm		0
	D_4	422	-	0
	D_{2d}	$\overline{4}2m$	-	0
Tetragonal	C_{4v}	4mm	-	(0, 0, z)
	C_{4h}	4/m	\checkmark	0
	\mathbf{S}_4	$\overline{4}$	-	0
	C_4	4	-	(0, 0, z)

POINT GROUPS

	Schönflies Notation	Hermann -Maugum	Inversion Center	Polar Vector
	D _{6h}	6/mmm	\checkmark	0
	D_6	622	-	0
	D_{3h}	6m2	-	0
Hexagonal	C_{6v}	6mm	-	(0, 0, z)
	C_{6h}	6/m	\checkmark	0
	C_{3h}	$\overline{6}$	-	0
	C_6	6	-	(0, 0, z)

POINT GROUPS						
	Schönflies Notation	Hermann -Maugum	Inversion Center	Polar Vector		
Rhombohedral	$\begin{array}{c} \mathbf{D}_{3\mathrm{d}} \\ \mathbf{D}_{3} \\ \mathbf{C}_{3\mathrm{v}} \\ \mathbf{C}_{3\mathrm{i}} \\ \mathbf{C}_{3} \end{array}$	$ \overline{3m} $ 32 $ \underline{3m} $ 3 $ 3 $	√ - √ -	0 0 (0, 0, z) 0 (0, 0, z)		
Orthorhombic	$egin{array}{c} D_{2h} \ D_{2} \ D_{2v} \end{array}$	mmm 222 mm2	√ - -	0 0 (0, 0, z)		

POINT GROUPS						
	Schönflies Notation	Hermann -Maugum	Inversion Center	Polar Vector		
Monoclinic	$\begin{array}{c} \mathrm{C_{2h}}\\ \mathrm{C_{S}}\\ \mathrm{C_{2}} \end{array}$	2/m m 2	√ - -	0 (x, 0, z) (0, 0, z)		
Triclinic	$egin{array}{cc} { m C_i} { m C_1} \end{array}$	$\frac{1}{1}$	√ _	0 (x, y, z)		

There are the 32 point group types.

Compound symmetry: screw axis and glide plane symmetry operations

The 230 unique space groups describing all possible crystal symmetries

FOR YOUR ADVANCED STUDY

International Tables for Crystallography, Volume A: Space Group Symmetry

Solid State Physics (Hardcover) by Gerald Burns

