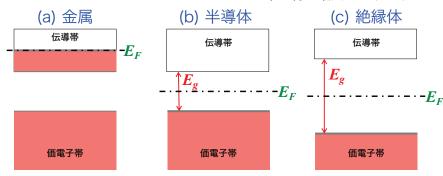


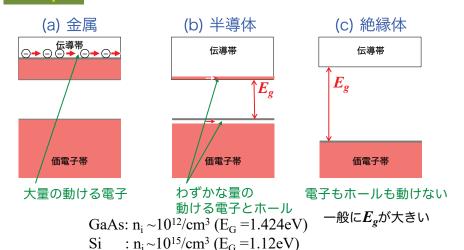
セラミックス材料学2019 (7回目) セラミックス材料の機能: 絶縁体と誘電体


亀川 厚則

kamegawa@mmm.muroran-it.ac.jp

バンド構造と電気伝導

T = 0 K


 E_F : フェルミエネルギー: 絶対零度において、電子が取り得る最大のエネルギー

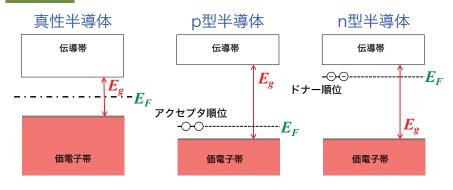
 E_g : バンドギャップ: 半導体、絶縁体においては、バンド構造における電子に占有された最も高いエネルギーバンド(価電子帯)の頂上から、最も低い空のバンド(伝導帯)の底までの間のエネルギーの差(およびそのエネルギー準位)

バンド構造と電気伝導

$T = T_1 K$

種々のセラミックスのバンドギャップ

Ge : $n_i \sim 10^{16}/\text{cm}^3$ (E_G =0.66eV)


ハロゲン化物			
材料	バンドギャップ(eV)		
AgBr	2.80		
BaF ₂	8.85		
CaF ₂	12.00		
KBr	0.18		
KCI	7.00		
LiF	12.00		
MgF ₂	11.00		
MnF ₂	15.50		
NaCl	7.30		
NaF	6.70		
SrF ₂	9.50		
TiBr	2.50		

2元系酸化物, 炭化物, 窒化物				
材料	バンドギャップ(eV)			
AIN	6.2			
Al₂O₃平行	8.8			
Al ₂ O ₃ 垂直	8.85			
BN	4.8			
C(ダイヤモンド)	5.33			
CdO	2.1			
Ga ₂ O ₃	4.60			
MgO	7.7			
α型SiC	2.60~3.20			
SiO ₂ (溶融シリカ)	8.3			
UO ₂	5.20			

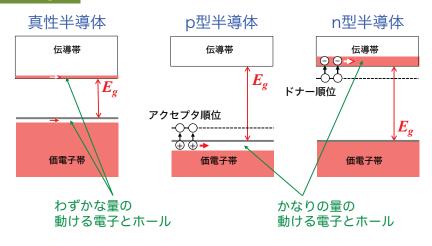
4


半導体のバンド構造

T = 0 K

絶緣体 (insulator)

絶縁体:ある一定の電場において、電流をほとんど流さないもの。誘電率が低いことが望まれる。 通常絶縁体といわれている物質が、常温で示す体積 抵抗率ρの値は、10¹⁴~10²² Ω·cm程度 誘電率が高いものは交流電流を通電することができ、 誘電材料と呼ばれる。


8

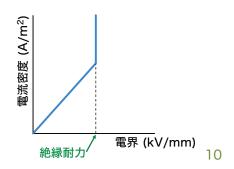
半導体のバンド構造

6

7

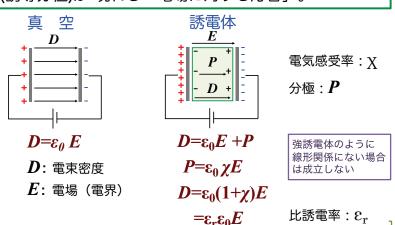
$T = T_1 K$

様々な絶縁材料


材料名	長石質陶器	アルミナ		フォルステライト	ムライト	ベリリア
主成分	SiO ₂ ·Al ₂ O ₃	96%Al ₂ O ₃	99.5%Al ₂ O ₃	2MgO·SiO ₂	3Al ₂ O ₃ ·2SiO ₂	99%BeO
比重 [gcm ⁻³]	2.3~2.5	3.75	3.90	2.8	3.1	2.9
熱膨張系数 [10 ⁻⁶ K ⁻¹]	5~7	6.7	6.8	10	4.0	6.8
熱伝導率 [W/m·K]	0.8~2.1	22	31	3	4	240
抵抗率 [Ωcm]	1010~1012	>1014	>1014	>1014	>1014	>1014
比誘電率@1MHz	2.0~6.0	9.0	9.8	6.0	6.5	6.8
絶縁耐力 [kVmm ⁻¹]	35	14	15	13	13	15
主な用途	電力用	耐熱用, プラグ用, IC基板用	耐熱用, 薄膜IC基板 用	一般電気 部品用, 高周波用	耐熱衝撃性良	高熱伝導 基板用

絶縁破壊 (dielectric breakdown)

絶縁破壊:電気・電力・電子回路やその部品において、導体間を隔離している絶縁体(非導電性物質や空気層など)が破壊され、絶縁状態が保てなくなること。


絶縁耐力(絶縁破壊強さ):絶縁性が保たれなくなる、材料 に印加される電界強度のこと。

アルミナ系セラミックスで大体10~15kV/mm程度

誘電分極 (dielectric polarization)

誘電現象:物体に対し外部から電場をかけたとき、(大小の 差はあれ) ほとんどの物体では表面に誘導された電荷 (誘導分極)が 現れる「電場に対する応答」。

複素誘電率 (complex permittivity)

印加電場, $E \Rightarrow$ 交流電場

$$E=E_0e^{j\omega t}$$

電束密度, D

$$D=D_0e^{j\omega t\cdot\delta}$$

 δ : 印加電場に対する異相の遅れ

$$D=\varepsilon_0\varepsilon^*E$$

複素誘電率: ε^*

$$\varepsilon^* = \varepsilon' - j\varepsilon$$
"

$$\varepsilon' = \frac{D_{\theta}}{\varepsilon_{\theta} E_{\theta}} \cos \delta$$

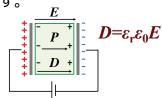
$$\varepsilon'' = \frac{D_{\theta}}{\varepsilon_{\theta} E_{\theta}} \sin \delta$$

$$\tan \delta = \frac{\varepsilon''}{\varepsilon'}$$

1秒間に単位体積あたりに誘電体が電場から受け取るエネルギー: W

$$W = \frac{1}{2} \omega \varepsilon \tilde{\epsilon}_{\theta} E_{\theta}^{2}$$
$$= \frac{1}{2} \omega \varepsilon \tilde{\epsilon}_{\theta} E_{\theta}^{2} \tan \delta$$

 ε "や $an \delta$ は誘電体に交流電場を印加したときのエネルギー損失


誘電材料 (dielectric materials)

誘電体とは?

導電性より誘電性が優位な物質 直流電圧に対して電流を流し にくい絶縁体

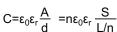
一般に、

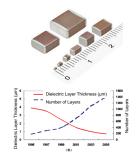
誘電率の小さい材料を絶縁材料 誘電率の大きな材料を誘電材料 と称す。

	物質名	\mathcal{E}_{r}	
	空気@0℃	1.00059	
気体	水素@0度	1.000264	
	二酸化炭素	1.000985	
	水	81	
7	エタノール	25.8	
	アセトン	26.6	
	ポリエチレン	2.2-2.4	
	氷	4.2	
	雲母	5.6-6.0	
固体	石英ガラス(SiO ₂)	4.0	
	シリコン	11.8	
	酸化チタン	80-160	
	チタン酸バリウム	1200-3000] 3	

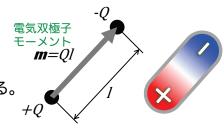
各種材料・物質の比誘電率, ε_{r}

コンデンサー (capacitor)


種々のコンデンサー



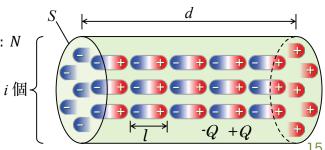
積層セラミックスコンデンサー Multilayer Ceramic Capacitor (MLCC)

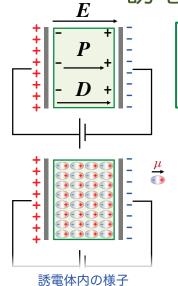


14

電気双極子モーメント

電気双極子:


近接した正負の電荷のペア。 電気双極子は自身が電場を 作るだけでなく、外部に印加 された電場によって力を受ける。

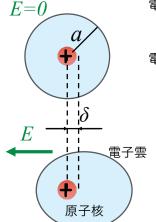

巨視的分極: P

双極子の体積密度: N

P=Nm

誘電分極の機構

u:電気双極子モーメント


誘電分極:

正負電荷の対(電気双極子)が材料 内に一様に分布しており、この正負 電荷が変位している状態。

- 1. 電子分極 (~10¹⁵ Hz)かなり速い 原子・分子内の電子が外部電場に引っ張 られ、その位置がズレる事で分極する
- イオン分極 (~10¹³ Hz)速い 固体中のイオンが電場によってズレ、分 極を生じる
- 3. 配向分極 (10⁶–10⁹ Hz)遅め。 双極子をもつ分子が電場により回転し、 分極を生じる
- 4. 空間電荷分極 (~10⁴ Hz) かなり遅い イオンが大きく移動し分布を変え、分極 を生じる

分極の機構

~ 電子分極 (electric polariztion) ~

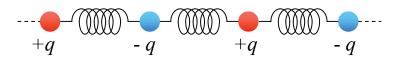
電気双極子モーメント: **μ** e

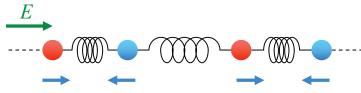
 $\mu = \alpha \in E$

電子分極率: α e

 $\alpha = 4\pi \varepsilon \circ a^3$

⇒原子体積に比例


単原子イオンのイオン分極率(10⁻²⁴ cm³)


, ,,,,,			/5 1			,
Li ⁺¹	$\mathrm{Be^{+2}}$	B+3	C+4	O ⁻²	\mathbf{F}^{-1}	Ne
0.029	0.008	0.003	0.0013	3.88	1.04	0.390
Na ⁺¹	Mg ⁺²	Al+3	Si ⁺⁴	S-2	Cl ⁻¹	Ar
0.179	0.094	0.052	0.0165	10.2	3.66	1.62
K ⁺¹	Ca ⁺²	Sc ⁺³	Ti+4	Se ⁻²	Br-1	Kr
0.83	0.47	0.286	0.189	10.5	4.77	2.46
Rb ⁺¹	Sr ⁺²	Y+3	Zr ⁺⁴	Te-2	I-1	Xe
1.40	0.86	0.55	0.37	14.0	7.10	3.99
Cs ⁺¹	Ba ⁺²	La+3				
2.42	1.55	1.04		Pau	ılng's	values 17

分極の機構

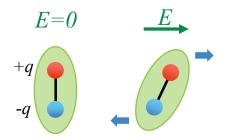
~イオン分極 (ionic polarization) ~

E=0 (電場ゼロ)

電気双極子モーメント: *从* i

 $\mu = \alpha i E$

電子分極率: α i


18

分極の機構

~ 配向分極 (dipolar polarization) ~

正負電荷の重心がずれた分子や基は永久双極子モーメントμをもつ

- μは熱運動により無秩序な方向分布
- ◆ 電界Eにより配向

電場によって配向する

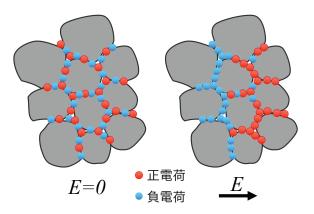
双極子モーメントμと電場Eは 古典統計力学的(Boltzmann分 布則)に整理される

$$\alpha_p = \frac{\mu}{3kT}$$

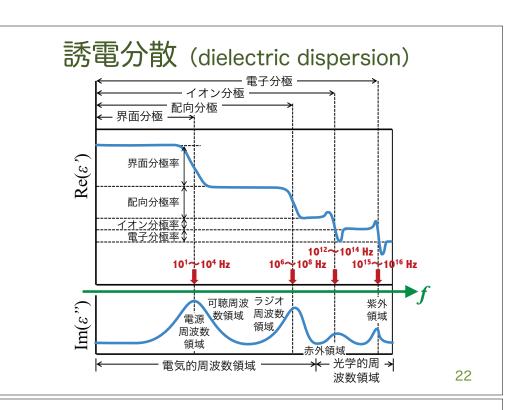
⇒温度が高いほど、熱振動 により分極はそろいにくい

分極の機構 (origins of polarization)

- 電子分極, α_e
- イオン分極, α;
- Ionic Crystals, NaCl
- 配向分極, α。
- Polar Molecules, HCI
- 界面分極, α_s

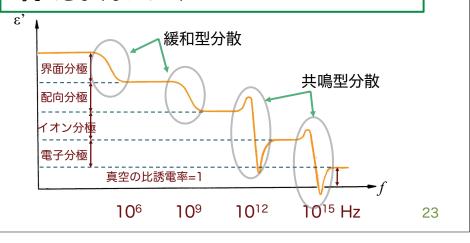


各分極機構による分極率の総和:


$$\alpha = \alpha_e + \alpha_i + \alpha_o + (\alpha_s)$$

$$\alpha = \alpha_e + \alpha_i + \frac{\mu}{3kT} + (\alpha_s)$$

界面分極 (interfacial polarization)


誘電体が不均一の場合、異種物質間の境界に正負の電荷が蓄積 される。例えば、材料内には多数の結晶粒界が存在する。その 粒界には正負の空間電荷が蓄積されているが、外部電界が印加 されると、分極が生じる。

誘電分散 (dielectric dispersion)

誘電率が周波数によって変化→誘電分散

外部から印加する交流電場の振動速度を上げていくと、動きの遅い成分から次第に追従できなくなり、誘電率に寄与できなくなっていく

